1. Complete the truth table below using your knowledge of symbolic logic.

р	q	~q	p∧q	p∨q	$p \rightarrow q$	$q \rightarrow p$	$p \leftrightarrow q$	p → ~q	$p \lor q \rightarrow p$	$p \land q \rightarrow q$
Т	T	F	Т	Т	Т	T	Т	F	T	Т
Т	F	Т	F	Т	F	Т	F	Т	Т	Т
F	Т	F	F	Т	Т	F	F	Т	F	Т
F	F	Т	F	F	Т	Т	Т	Т	Т	Т

Answer questions 2 through 9 based on the truth table above.

- 2. Which statement is a negation? ~q
- 3. Which statements are conditionals? $p \rightarrow q$, $q \rightarrow p$, $p \rightarrow \neg q$, $p \lor q \rightarrow p$, $p \land q \rightarrow q$
- 4. Which statement is a disjunction? p∨q
- 5. Which statement is a biconditional? $p \leftrightarrow q$
- 6. Which statement is a conjunction?
- 7. Which statements are logically equivalent? $q \rightarrow p$ and $p \lor q \rightarrow p$
- 8. Which statement is a tautology? $p \land q \rightarrow q$
- 9. Determine which of the following statements are tautologies by constructing a truth table. Write yes or no in the space provided.
 - a) r∨~r yes
 - b) $r \rightarrow r$ no
 - c) $(x \lor y) \longrightarrow (x \land y)$ no
 - d) $\sim (p \vee q) \leftrightarrow (\sim p \wedge \sim q)$ yes