Economic applications

Economic applications of derivatives

The elasticity of a function $y = f(x)$:

$$
E(x) = \lim_{\Delta x \to 0} \frac{x}{y} \frac{\Delta y}{\Delta x} = \frac{x}{y} \frac{dy}{dx} = \frac{x}{y} y'
$$

The price elasticity of demand:

$$
E(P) = -\frac{P}{Q} \frac{dQ}{dP}
$$

The price elasticity of supply:

$$
E(P) = \frac{P}{Q} \frac{dQ}{dP}
$$

Marginal product of labour:

$$
MP_{L} = \frac{dQ}{dL} = Q'(L)
$$

Marginal revenue:

$$
MR = \frac{dTR(Q)}{dQ}
$$

Marginal cost:

$$
MC = \frac{dTC}{dQ}
$$

Solved problems

Find marginal revenue MR (x) of the total revenue

 $\alpha = x^3 - 2x^2$ and marginal costs of the total costs $TR(x) = x^3 - 2x^2 + 5x + 5$ and costs of the total cost $TC(x) = 120x^4 - \ln x$

Solution:

$$
MR(x) = \frac{dTR(x)}{dx} = 3x^2 - 4x + 5
$$

$$
MC(x) = \frac{dTC(x)}{dx} = 480x^3 - \frac{1}{x}
$$

Solved problem

Find extremes of the production function $Q = 6L^2 - 4L^3$. Draw its graph.

Solution:

The first derivative is $Q'=12L-12L^2$, we find roots of the first
2 Q' and $L = 4$. By the use of the second de derivative: $L = 0$ and $L = 1$. By the use of the second derivative, or by checking signs of the first derivative, we obtain that $L = 0$ is a local minimum and $L = 1$ is a local maximum. Therefore, the highest (optimal) production is achieved when $L = 1$. The graph is provided on the next slide.

Assignment

Find the maximum of total revenue function $TR(Q) = -1400 + 80Q - Q^2$. Find the minimum of total cost function: $TC(Q) = 100 - 60Q + Q^2$ Find the maximum of the profit function: . 2 PR ^Q ^Q ^Q () ¹⁰⁰ ⁶⁴ ⁴ ⁼ ⁺ [−]

Find the maximum of total revenue function: $\mathit{TR}(Q) = -80Q^2 + 160Q + 200$.

Differential calculus of two real variables

Many economic functions contain more then one variable.

For example, Cobb-Douglas function includes labour L and capital K as well as the technological parameter A:

$$
Q(K,L) = AK^{\alpha}L^{\beta}
$$

We will limit ourselved to functions of two variables. A graphof a function of two real variables is a plane in 3D space, See the next slide.

A graph of Cobb-Douglas function

Cobb – Douglas function

C-D function: $Q = AK^aL^b$ Usually, we assume that $\qquad a+b = 1$ Then, C-D: $Q = AK^aL^{1-a}$

 $\frac{\partial Q}{\partial z} = AK^a(1-a)L^{-a} = \frac{A}{A} \left(\frac{K}{A}\right)^a$ Marginal product of labour:Marginal product of capital: $MP_{L} = \frac{\partial Q}{\partial L} = AK^{a}(1-a)L^{-a} = \frac{A}{1-a}\left(\frac{R}{L}\right)$ $^{1}L^{1-a} = Aa \left(\frac{K}{\cdot}\right)^{a-1}$ L $1-a \setminus L$ $=\frac{\partial z}{\partial L} = AK^a(1-a)L^{-a} = \frac{\partial z}{1-a} \left(\frac{\partial z}{L}\right)$ $\therefore MP_K = \frac{\partial Q}{\partial K} = A a K^{a-1} L^{1-a} = A a \left(\frac{K}{L}\right)^{a-1}$

A utility function

Let n be the number of different types of good. Let Q1, Q2, Be the amount of the good 1, 2, etc.Then a function $U(Q_1, Q_2, ..., Q_n)$ alled the utility function. Typically, a Then

utility function is concave:

Marginal utility

Marginal utility is defined as follows:

$$
MU_1 = \frac{\partial U(Q_1, Q_2)}{\partial Q_1} \qquad MU_2 = \frac{\partial U(Q_1, Q_2)}{\partial Q_2}.
$$

Example:

Find marginal utilities of the utility function . $U = Q_1^{0,5} \cdot Q_1^{0,2}$

Solution:

$$
MU_1 = \frac{\partial U}{\partial Q_1} = 0,5Q_1^{-0.5} \cdot Q_1^{0.2}
$$

$$
MU_2 = \frac{\partial U}{\partial Q_2} = 0,2Q_1^{0.5} \cdot Q_1^{-0.8}
$$