Measures of cent	ral tendency		
Mean:	$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	=AVERAGEA	
Mode:	the most frequent value	=MODE.SNGL	
Median:	middle value	=MEDIAN	
Measures of vari	ability		
Sample variance	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$	=VAR.S	
Sample Standard deviation	$s = \sqrt{s^2}$	=STDEV.S	
Range	R=max xi - min xi		
Variation coefficient	$v_x=rac{s_x}{ar{x}}$		

Variance represents one of the most important characteristics of variability.

It takes into account all the values from the statistical set and is based on the distance of the values from t

The standard deviation tells us how much the typical cases in the set of numbers under study differ from e If it is small, the elements of the set are mostly similar to each other, and on the contrary, a large standard Using the 1σ and 2σ rules, one can approximately determine how far the numbers in the set are from the a The standard deviation is the most widely used measure of variability.

Kurtosis: The measure of the "tailedness" of the data.

Kurtosis is a statistical measure that describes the shape of a data distribution, specifically how the tails (When we say kurtosis is a measure of the "tailedness" of the data, we are referring to how heavy or light

Skewness: The measure of asymmetry in the data distribution.

the arithmetic mean.

each other. deviation signals great mutual differences. verage, or how far the values of the random variable are from the mean.

(extreme values) of the distribution compare to a normal distribution. : the tails are in comparison to a normal distribution.

4	4	5

Revenues in the department store (in thousands)

33,7 56,32 10,97 45,09 57,05 39,89 50,12 59,49 9,97 62,54 20,15 42,16 75,93 21,47 9,96 34,42 48,67 36,05 63,75 18,56 17,76 35,26 32,76 68,1 11,49 82,7 53,91 39,73 79,01 5,97 30,06 15 21,25 27,18 50,1 41,72 94,86 19,92 25,01 51,45

Task: Divide the data into an appropriate number of classes and construct a frequency h

$k = Round(3, 3.\log_{10}(n)) + 1$

calculations

number of class max: min: variation range the width of the class

ıistogram.

class	the upper limit of the class	frequency
(5;20>		
(20;35>		
(35;50>		
(50;65>		
(65;80>		
(80;95>		

Amount of barrels of oil taken by individual companies (in thousands)

Task: Divide the data into an appropriate number of classes and construct a frequency histogra

11	15	17	13	8
16	18	14	18	10
7	2	10	12	17
20	16	9	9	11
15	22	15	6	21
14	14	13	19	6
3	21	16	21	17
10	13	17	17	13
19	6	23	11	18
12	12	20	8	15
13	1	11	16	9
22	9	18	19	16
9	15	5	6	7
11	15	8	25	14
17	10	15	10	12
11	7	20	15	5
10	18	14	4	19
5	13	7	20	9
12	8	10	13	15
4	12	1	15	14

$k = Round(3, 3.\log_{10}(n)) + 1$

calculations

n: number of class max: min: variation range the width of the class

ım.

Measures of central tendency

Mode:	â	=MODE.SNGL
Median:	\widetilde{x}	=MEDIAN
Population mean:	$\mu = \frac{1}{N} \cdot \sum_{i=1}^{N} x_i$	=AVERAGEA
Sample mean:	$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	=AVERAGEA
Geometric mean	$\overline{x}_g = \sqrt[n]{x_1 \cdot x_2 \dots \cdot x_n}$	=GEOMEAN
Measures of variability		
Range:	R=max x_i - min x_i	
Range: Population variance	R=max x _i - min x _i $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$	=VAR.P
-		=VAR.P =VAR.S
Population variance	$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$	
Population variance Sample variance	$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \mu)^{2}$ $s^{2} = \frac{1}{n - 1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$	=VAR.S

Data \rightarrow Data Analysis \rightarrow Descriptive Statistics

Frequency histogram

Sturgers rule

 $k = Round(3, 3.\log_{10}(n)) + 1$

Data → Data Analysis → Histogram