A teacher wants to summarize the exam scores of a class of 50 stude. The scores (out of 100) are as follows:

75	85	92	88	73	95	80	77	85
76	86	93	89	74	96	81	78	86
73	83	90	86	71	93	78	75	83
77	78	75	85	86	83	90	91	88
82	97	79	77	75	80	86	84	85

Measures of central tendency

Mode:

Median:

Population mean:

Measures of variability

Range:

Population variance

Population standard deviation

nts to understand the overall performance and variability.

class	the upper limit of the class	frequency
(70;75>		
(75;80>		
(80;85>		
(85;90>		
(90;95>		
(95;100>		

A company wants to know if customer preferences for three types of They believe that 50% of customers prefer Product A, 30% prefer Pr They conduct a survey of 200 customers to test this hypothesis.

From the survey, the company records the following observed count:

Product A: 90 customers Product B: 70 customers Product C: 40 customers

Test at the alpha significance level 0.05

Null hypothesis (H0): Customer preferences match the expected dis Alternative hypothesis (H1): Customer preferences do not match th

	Oi (Observed)	Ei (Expected)
Product A	90	
Product B	70	
Product C	40	

products—Product A, Product B, and Product C—match the market's expected oduct B, and 20% prefer Product C.

s:

stribution (50% for Product A, 30% for Product B, and 20% for Product C). re expected distribution.

Test criterion			

cted preference distribution.

A researcher wants to determine if there is an association between The researcher surveys 200 people, and the data collected is summ

	Action	Comedy	Drama
Male	40	30	20
Female	10	50	50
Total			

The goal is to test if there is a significant association between gend Test at the alpha significance level 0.05

Null hypothesis (H_o): Gender and movie preference are independ Alternative hypothesis (H₁): Gender and movie preference are no

Expected frequencies

	Action	Comedy	Drama
Male			
Female			

I gender and preference for three types of movies: Action, Comedy, Narized in the table below:

Total	

er and movie preference.

ent (no association). t independent (there is an association).

Test criterion

	Action	Comedy
Male		
Female		

and Drama.

Drama]
	Ī

A nutritionist wants to test whether three different diets—Diet A, Diet B, To do this, they assign a group of people to each diet and measure their The nutritionist wants to determine if the diet type significantly affects

Null hypothesis (H0): The mean weight loss is the same for all diets, i.e. Alternative hypothesis (H1): At least one diet leads to a different mean

Test at the alpha significance level 0.05

The weight loss (in kg) for participants in each diet group is as follows:

DIET A	4	5	6	5	7
DIET B	8	7	9	8	10
DIET C	3	2	4	3	3

and Diet C—lead to different average weight loss outcomes. weight loss (in kilograms) after 8 weeks. weight loss.

there is no dependance weight loss. (There is dependance)

Suppose a researcher wants to test how two factors—type of fertilizer affect plant growth (measured in centimeters). Each combination of fertilizer type and sunlight level is tested on one p

Test at the alpha significance level 0.05

Main Effect of Fertilizer: Whether different types of fertilizer lead to d

H0: No significant difference in plant growth between Fertilizer X and

Main Effect of Sunlight Level: Whether different levels of sunlight lead

HO: No significant difference in plant growth across different sunlight

The researcher collects the following growth measurements (in cm) for

Sunlight Level	Fertilizer X	Fertilizer Y	
Low	12	14	
Medium	20	22	
High	30	25	

(Fertilizer X and Fertilizer Y) and sunlight level (Low, Medium, High)-

plant (hence, no replication for each combination).

ifferent average growth.

Fertilizer Y.

I to different average growth.

levels.

r each combination of **fertilizer type** and **sunlight level**:

-