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Outline of the lecture

* Time series
* Decomposition of the time series into
the trend, seasonal, cyclic, and random component
* The trend component
* The seasonal component
 Autocorrelation of the random component: Durbin-Watson test

 Moving average: simple, centred, and weighted moving average



Time series - QE

A time series is a sequence of data points listed in time order.

A time series is usually a sequence of data variable (Y) taken at equidistant
points of time {such as one hour, one day, one week, one year, and so on).
Without loss of generality, we can assume that the time pointsare t =10,1,2,3, ...
In other words, we usually consider discrete-time data.

We distinguish:
* [nstantaneous value type time series

» step accumulated value type time series



Time series

* Instantaneous value type time series
— the measured value is taken at a particular time.

Examples: the air temperature, the wind speed

« Step accumulated value type time series
— the measured value is take over an entire interval of time

Example: the rainfalls during the past hour



Time series - QE

It is usually assumed that

« the main factor that affects the observed value ¥ mainly is the time,
« the time points at which the data are observed are equidistant; that is,
the time intervals are of the same length.

The goal is to formulate a mathematical model of the time series
and to use it for time serles forecasting (prediction).
We distinguish two types of prediction:

« point prediction



Time series - ﬁ

We usually assume that the time series can be decomposed into

the following four components:

« T, — the trend component
« 5; — the seasonal component
« C; — the cyclic component

g — theirregular component / the random error



Time series

We then can assume:
 either the additive model of the time series:

Y, =T, +S5:+C+¢ for t=0,1,23,..
» or the multiplicative model of the time series:

Y =T X 8¢ X Cp X & for t=0,1,2,3,..

where
e T, — the trend component
+ S5, — the seasonal component

« ¢ — the cyclical component



Time series - ﬁ

The trend component T, describes the long-term progression of the time series.

It reflects the systemafic and long-term effect of the main factors.
A special case is if the trend is identically zero (T, = 0 forall t);

the time series has no trend then.

The seasonal component S, reflects the seasonality, i.e. seasonal factors,
which repeat periodically during a fixed and known period of time, often a year
(sometimes a week). The seasonality is then observed over intervals shorter than

a year (or a week), such as the quarter of the year / month / week



Time series

The cyclical component C; captures fluctuations (rises and falls) that
are repeated but have not a fixed period, such as the “business cycle”
(economic cycle / trade cycle). The period is not fixed and usually
longer than one year.

The random error &, is often assumed to be distributed normally and
homoskedastic (with the same variance), that is
g ~N(0,6%2) forevery t=0,1,2,3,..

and the random variables & are assumed fo be mutually independent.



Time series: Special cases

The general (additive) model, which we assume is
Yt Tt+St+C¢+Et for t=0,1,2,3,...

A special case is when the cyclical component C, is zero:
Y =T +5;: + & for £t=0,1,23,..

A yet more special case is when both the cyclical component C;
and the seasonal component S; are zero:
Vi =T + & for t=0,1,2,3,..




Time series: Trend component - as

From now on, we assume the following simple (additive) model of the time series:
Yi=T;+ & for t=0,1,2,3,..

where T; is the trend component.

The trend component 7, often falls into one of the following cases:
» constant/ linear/ quadratic/ ... / polynomial trend

« exponential / logarithmic trend

 logistic trend

 Gompertz trend



Time series: Constant trend

The time series is
Yi =T + & for t=0,1,23,..

where the trend component is of the form

Tt — ﬁo for t= 0,1,2,3,..

for some (unknown but) fixed real number
BoER

The parameter 8, € R can be estimated by using the method of



Time series: Linear trend - as

The time series is

Yi =T + & for t=0,1,23,..

where the trend component is of the form

Tt=ﬂo+ﬁt for t=0,1223,..

for some (unknown but) fixed real numbers
BoER and BER

The parameters B, S € R can be estimated by using the method of



Time series: Quadratic trend

The time series is

Yi =T + & for t=0,1,23,..

where the trend component is of the form

Te=Bp+ Pt +Bt%2 for t=0,1,23,..

for some (unknown but) fixed real numbers

ﬁﬂ! Bll ﬁz ER

The parameters B, 1, 52 € R can be estimated by using the method of



Time series: Polynomial trend

The time series is

Yi =T + & for t=0,1,23,..

where the trend component is of the form

Te = Bo+ Byt + Bot2 + -+ Bt  for t=0,1,2,3,..

for some {unknown but) fixed real numbers

ﬁD! ﬁ’pﬁz: '"lﬁk ER

The parameters B, 51, 52, ... Bx € R can be estimated by using the method of



Time series: Exponential trend

The time series is
Yi =T + & for t=0,1,23,..

where the trend component is of the form

T’C = ﬁoﬂt for t= 0,1,2,3,..

for some (unknown but) fixed real numbers
BoER and BER

The parameters B, S € R can be estimated by using the method of



Time series: Logarithmic trend

The time series is

Yi =T + & for t=0,1,23,..

where the trend component is of the form

Ty = o+ fInt for £t=0,1,2,3,..

for some (unknown but) fixed real numbers
BoER and BER

The parameters B, S € R can be estimated by using the method of



Time series: Logistic trend

The time series is

Yi =T + & for t=0,1,23,..

where the trend component is of the form

_ K
14 Boft

Tt for t= 0,1,2,3,..

for some (unknown but) fixed real numbers
k>0 and fo >0 and 0<p <1



Time series: Gompertz trend

The time series is

Yi =T + & for t=0,1,23,..

where the trend component is of the form

T,=axf’ for t=0,1,23,..

for some (unknown but) fixed real numbers
a (usually a>0) and g >0 and

0<y<1




Time series: Which trend to choose?

where

Suggested Trend

Aly, ~ const. Linear
Aly, = linear & A%y, = const. Quadratic
Aly, ~ Gaussian curve Logistic
Ay, =y, — ¥4

ﬁzJ’t = ﬂl}’t — Ai)’t—1



Time series: Seasonal component

Assume that each period oftime ¢ =0,1,2,3,... consists of s, seasons.
For example, a year consists of s, = 4 quarters or s; = 12 months;

a week consists of s, = 7 days.

We thus assume that the time series

is of the form
Yes = T + S5 + &5 for t=0,1,23,.. and s=1,2,..,5
where

« T; Iisthe frend component

» §; Isthe seasonal component



Time series: Seasonal component

Woae here assume the constant seasonality.
That is, the time series is of the form

Yic = T + S5 + & for t=0,1,2,3,.. and s=1,2,..,5

and the numbers 5,,5,,...,5;, € R are such that

The trend component T; is then assumed {o be linear or polynomial, say.



Time series: Seasonal component

Assuming the constant seasonality, the model of the time series is written as

Yes =Te +yo + Vaxa +¥axa + oo+ ¥ X5,

where
Yo=S51 and y,=5,—-85 Y3=8—5 Vso = 95, — 91
and
either
Xy =Xz = =Xg, = if s=1
or

Xxs=1 and xp=--=x5_1=0=2%541 = =%, if s€{23,..,50}



Time series: Seasonal component

If the trend is polynomial, say, we obtain:
Yes = Bo + But + Bat? + -+ Bit® + vaxz +yaxa + - + ¥go s,
The term y, = S; is included in the constant (intercept) term fS,.

We have as above:

either

or

xs=1 and xp=--=x5 1 =0=1xg,; =" =1x if s€{2,3,..,50}



Autocorrelation
of the random « Durbin-Watson test

component




Time series: The Classical Assumption

Wae here consider the time series of the form

Y. =T¢ + & for t=0,1,2,3,..
or
Yoo =T + S + & for t=0,1,2,3,... and s=1,2,..,5

with Sy, 55, ..., S, € R such that 3.2, S, =0, where
T, isthe trend component
+ S, Isthe seasonal component

* g Or & isthe random component

Let us consider the first case (Y; = T; + &) only for simplicity.



Time series: The Classical Assumption

Woae then adopt the classical assumptions that

&l - R"?
is a random vector such that
g ~ N(0,0%)
so that
* Var(s) = o? for t=12..,n (homoskedasticity)
 covieg,e,)=0 if s+t for s,t=1,2,..,n (no correlation)

The latter assumption is often violated in time series.



Time series: Autocorrelation - QE

Consider the equation
Ep—1 = P& + U for £t=0,+1,+2,43,..

where p € R and the random variables are u, ~ N'(0,6%) are independent.
If

« p=0 then no autocorrelation is present
« p>0 then positive autocorrelation AR(1) is present

« p<0 then negative autocorrelation AR(1) is present

Our purpose is to test the null hypothesis
HQ: P = 0



Time series: Durbin-Watson test

We have a sample

Y1, Y25 Yn

of observations of the variable Y for t =1,2,..,n.

By using the Linear Regression, we estimate the respective parameters
Bo, B, - B and we calculate the corresponding theoretical values

ﬁl!ﬁZ! :ﬁn

and the residuals
e =V — Vi for t=12,..,n



Time series: Durbin-Watson test

Wae calculate the statistic

¥=2(€t = et—l)z _ E¥=2(et — 3t—1)2

ad=
RSS t16f

and formulate the null hypothesis

HO: P = 0
The alternative hypothesis is
— either
Hl P >0
— or



Time series: Durbin-Watson test

Calculate the statistic
d

_ E?:z(f'-'t - 83_1)2 _ Z}Lz(et —_ Et_l)z
RSS =1 et?

and observe that

0<d<4

Since x,-+ = 4 — K, it holds for the quantile functions

di(1—a)=4—dy(a) and dy(l—a) =4 —d(a)

Remark: The values of the quantile functions can be found



Time series: Durbin-Watson test

Calculate the statistic
d = E?:z(f'-'t - 83_1)2 _ Z}Lz(et —_ Et_l)z
RSS =1 et?

and calculate the estimate of the paired correlation coefficient

_ i=2€t€r 1
Q=1 ef

If r >0 or r <0, then the alternative hypothesisis Hy: p> 0 or H;: p <0,



Time series: Durbin-Watson test

Durbin-Watson test of the null hypothesis H,: p = 0 against

the aliernative hypothesis Hq: p > O:
+ Choose the level of significance, a small number a > 0, suchas a =5 %.

« Calculate the statistic

t=2(et — ep—1)* _ Xr—o(er — et—1)°

ad=
RSS e

If d <di(a), then reject the null hypothesis.
« If dy(a) <d, then do nof reject the null hypothesis.
If di(a) <d < dy(a), then the test is indecisive.



Time series: Durbin-Watson test

Durbin-Watson test of the null hypothesis H,: p = 0 against

the aliernative hypothesis Hq: p < O:
+ Choose the level of significance, a small number a > 0, suchas a =5 %.

« Calculate the statistic

t=2(et — ep—1)* _ Xr—o(er — et—1)°

ad=
RSS e

If dy(1—a) <d, then reject the null hypothesis.

If d <di(1—a), then donotreject the null hypothesis.
If dp(1—a)<d <dy(l-a), then the test is indecisive.



Moving average

« Simple moving average

* Weighted moving average




Moving average

A moving average is a method of the synthetic approach to the trend analysis.

It consists in averaging a moving sample of consecutive observations

of the random variable Y.

The values smoothed in this way describe the sole trend contained in the
time series, i.e. the trend without the external factors.

The new series of the averages can be analysed then.



Simple moving average

Let a sample

Y1, Y2, 000 ¥n

of observations of the random variable Y for t =1, 2,...,n be given.

Choose the length m of the moving part of the time series.

Woae usually choose the length

m=2p+1 for some pE{l 2,. \ ‘}
I.e. an odd number.

Remark: If the seasonal component is assumed, then the length m is chosen



Simple moving average

Having chosen the length

m=2p+1
and having the sample

Y12 Y2y Yn

we consider the new time series

J_’p+1! J_’p+2J "y _'n.—p

of the moving averages
'r+'p

Ve = 2p+1 Z Ve for 7=p+1,p+2,...,n—p

_-;'—p




Simple moving average: Example

A time series and its moving averages of length m = 5:

L

Ve
average

t

Ve
average

1 2 3 4 3) 6 7 8 9 10
34 40 37 42 45 47 44 51 52 58
39,6 42,2 43,0 45,8 47,8 50,4 52,0 56,0
11 12 13 14 15 16 17 18 19 20
95 64 59 66 68 62 72 75 72 77
57,6 60,4 62,4 63,8 65,4 68,6 69,8 71,6




Simple moving average: Example

Numbers of passengers of SABENA per quarter:
moving averages — interval of 4 time periods

2500

2000 /\
1500 X /\ W
1000 ~ N
500
0 ‘
o & & & & & I S o o oV &




Moving average

In general, we choose:

« the length m of the moving window,

« theorder k €{1,2,...,m — 1} of the approximating polynomial.

Woae then approximate each segment

Ye—ps v Yoo 0 Ytp
by a polynomial

Yr+x = Po + Bix + Box? + oo+ Brx® for x=-p,..,0,..,+p

by using the Least Squares Method (i.e. Multiple Linear Regression)



Moving average

That is, we calculate

+p
Z (Vr4x — bg — byx — byx2 — oo — bkxk)z — min
xX=—p

and let

Y. = by
foreach t=p+1,p+2, ..,n—p.

« The choice k =1 (approximation by a linear polynomial)

yields the simple moving average, as above.
 The choice k = 2,3, ... (approximation by a quadratic, cubic, ... polynomial)

yields other centred moving averages.



Moving average: Weighted moving average

Remark: Instead of the simple moving average

T+p

_ 1
y.,—zp_l_lt_z_pyt for T=p+1L,p+2,..,n—-p

we can also consider a weighted moving average

WaVr+x for t=p+1L,p+2..,n—p

where w_,, ..., Wy, .., W4p = 0 are weights.



