Řešení optimalizačních úloh v Excelu

Optimalizační moduly v tabulkových kalkulátorech, které naleznete ve všech běžně používaných verzích, jsou v podstatě totožné. Dále je proto nebudeme navzájem odlišovat a zaměříme se na práci s nejpoužívanějším z nich s Řešitelem (Solver) tabulkového kalkulátoru MS Excel. Ten je určen pro řešení standardních úloh matematického programování. Je tedy možné řešit jak lineární, tak i nelineární optimalizační úlohy. My se však zaměříme především na úlohy lineárního programovaní, které MS Excel rozšiřuje o některé další možnosti. Nejvýraznější z nich je možnost řešeni úloh s podmínkami celočiselnosti - tzn. některé nebo všechny proměnné modelu mohou byt definovány jako celočíselné proměnné.

Možnosti řešeni úloh větších rozměrů jsou v MS Excelu výrazně omezené, proměnných i omezujících podmínek může byt nejvýše několik set, pro naše účely je to však dostačující. V praxi se však řeší úlohy LP o rozsahu několika milionů proměnných i omezujících podmínek, k tomu už zřejmě Excel nestačí a zde je naštěstí k dispozici specializovaný SW.

MS Excel je u nás rozšířen především v české verzi. Setkat se lze však i s verzí anglickou. Proto budeme v následujícím popisu uvažovat českou verzi a pro eventuální uživatele anglické verze budeme však uvádět (většinou v závorkách) současně anglické ekvivalenty používaných terminů (zvýrazněných kurzivou). Pro ilustraci řešeni úlohy LP v Excelu použijeme následující přiklad úlohy LP, tzv. nutriční problém.

Řešená úloha:

Denní dávka výživy pro skupinu dospělých osob by měla mít energetickou hodnotu v rozmezí od 15000 do 20000 kJ, měla by obsahovat minimálně 80 g bílkovin, 15 mg železa a 10000 jednotek vitaminu A. Pro zabezpečení uvedených požadavků je k dispozici 8 základních druhů potravin. Jejich složeni z hlediska uvažovaných komponent (vždy na 100 g dane potraviny) a jejich cena v Kč za 100 g je uvedena v tabulce 1. V denní dávce výživy může byt přitom od každé potraviny maximálně 400 g a minimálně 100 g.

Cílem v dané úloze je nalezeni takové skladby výživy, která bude respektovat všechny výše uvedené požadavky a současně bude co nejlevnější. V matematickém modelu úlohy lineárního programování bude zřejmě 8 proměnných, které budou vyjadřovat množství jednotlivých potravin ve stovkách gramů v navržené denní dávce výživy. Každá z proměnných bude zdola i shora omezena (maximální množství každé potraviny je 400 g, minimální množství je 100 g). Každé výživové komponentě bude odpovídat jedna omezující podmínka (kromě energie, kde budou tyto podmínky dvě), která zabezpečí splněni definovaných požadavků.

Potravina	Energie	Bílk.	Železo	Vit. A	Cena
	[kJ]	[g]	[mg]	[jedn.]	[Kč]
Maso vepř.	1200	18,4	3,1	20	12,00
Máslo	3000	0,6	0,2	2500	11,20
Chléb	1160	7,2	0,8	0	1,50
Brambory	300	1,6	0,6	40	0,70
Jablka	240	0,0	0,5	60	1,80
Sýr eidam	1260	31,2	0,6	1100	10,60
Kuře	650	20,2	1,5	0	6,50
Jogurt bílý	450	7,0	0,2	260	3,20

Tabulka 1: Vstupní údaje pro úlohu lineárního programování (nutriční problém)

Matematický model vypadá následovně:

 $12x_1 + 11, 2x_2 + 1, 5x_3 + 0, 7x_4 + 1, 8x_5 + 10, 6x_6 + 6, 5x_7 + 3, 2x_8 \rightarrow MIN$

Za podmínek:

$$\begin{split} &1200x_1 + 3000x_2 + 1160x_3 + 300x_4 + 240x_5 + 1260x_6 + 650x_7 + 450x_8 \ge 15000 \\ &1200x_1 + 3000x_2 + 1160x_3 + 300x_4 + 240x_5 + 1260x_6 + 650x_7 + 450x_8 \le 20000 \\ &18, 4x_1 + 0, 6x_2 + 7, 2x_3 + 1, 6x_4 + & 31, 2x_6 + 20, 2x_7 + 7, 0x_8 \ge 80 \\ &3, 1x_1 + 0, 2x_2 + 0, 8x_3 + 0, 6x_4 + 0, 5x_5 + 0, 6x_6 + 1, 5x_7 + 0, 2x_8 & \ge 15 \\ &20x_1 + 2500x_2 + & 40x_4 + 60x_5 + 1100x_6 + & 260x_8 \ge 10000 \\ &1 \le x_i \le 4, kde \ i = 1, 2..., 8. \end{split}$$

Při řešení konkrétní optimalizační úlohy v Excelu musí uživatel nejprve připravit v tabulce vstupní data. Jejich uspořádání může byt v podstatě libovolné, musí byt však dodržena jistá pravidla, která vyžaduje optimalizační modul. Obr. 1 ukazuje, jak mohou byt v tabulce Excelu rozvržena vstupní data výše uvedeného přikladu. Většina koeficientů ve spreadsheetu na Obr. 1 jsou přímo zadané numerické hodnoty - například v naší úloze se jedna o koeficienty, popisující složeni jednotlivých potravin (blok B3:E10), jejich cena (F3:F10), minimální a maximální požadavky na jednotlivé komponenty (B13:E14) a dolní a horní meze pro použití jednotlivých potravin (C18:C19). V matematickém modelu naši úlohy bylo definováno 8 proměnných. Ve spreadsheetu jsme pro tyto proměnné rezervovali blok H3:H10 a každé z těchto proměnných jsme přiřadili počáteční hodnotu 0 (viz Obr. 2).

	Microsoft Excel - VÝŽIV	VA.XLS	8		8			8	E [2	<u> </u>			_ 8 ×
	Soubor Úpr <u>a</u> vy Zobraz	st Vjožt <u>F</u> ormát	Nástroje DEA D	ata Qino Nápo	vēda									_ # ×
	🛩 🖬 🖨 🗟 💞	👗 🖻 🖻 ダ	1 xx - cx - 1	🍓 Σ 💪 🛃	XI 🛍 😽 10	0% - 🕐 🗸								
Tr	nes New Roman 🔹 14	• B I U		Ba 🐨 % 🚥	*************************************	E 🖂 • 🙆 •	Δ	🧳 Execute -						
	B3 💌	= 1200												
	A	8	C	D	E	F	G	H	1	J		ĸ	L	
1		Energie	Bakoviny	Zelezo	VII. A	Cena		Denní dávka						
2		kJ	8	mg	jean.	КС		x 100 g						
3	Maso vepř.	1200	18.4	3.1	20	12		0.00						
4	Másto	3000	0.6	0.2	2500	11.2		0.00						
5	Chléb	1160	7.2	0.8	0	1.5		0.00						
6	Brambory	300	1.6	0.6	40	0.7		0.00						
7	Jabika	240	0	0.5	60	1.8		0.00						
8	Sýr eidam	1260	31.2	0.6	1100	10.6		0.00						
9	Kuře	650	20.2	1.5	0	6.5		0.00						
10	Jogurt bilý	450	7	0.2	260	3.2		0.00						
11														
12	Požadavky	1												
13	min	15000	80	15	10000		Cen	a denní dávk	y Kč					
14	max	20000	XXX	XXX	xxx									
15	návrh	0	0	0	0			0.00						
16														
17	Použití potravi	n ve 100 g												
18		min	1											
19		max	4											
20														
21														
22														-
H.	F H List1 / List2 / I	uist3 /					1							۰L
Při	praven										j j			

Obrázek 1: Vstupní data pro úlohu LP - MS Excel

Aby bylo možné ve spreadsheetu zapsat jednotlivé omezující podmínky, je třeba nejprve vyjádřit jejich levou stranu. Ta bude potom porovnaná s konstantami na pravé straně. Pro ilustraci uvažujme první omezující podmínku našeho přikladu (energetická bilance):

 $1200x_1 + 3000x_2 + 1160x_3 + 300x_4 + 240x_5 + 1260x_6 + 650x_7 + 450x_8 \ge 15000$

Leva strana tohoto omezeni je vlastně skalárním součinem vektoru strukturních koeficientů, které vyjadřuji energetickou vydatnost na 100 g jednotlivých potravin, s vektorem proměnných modelu. Ve spreadsheetu na obr. 1.1 se jedna o skalární součin vektoru, který je umístěn v bloku B3:B10 s vektorem v bloku H3:H10. V Excelu je na výpočet skalárního součinu k dispozici funkce, kterou lze v této souvislosti využit. V české verzi Excelu se jedna o funkci SOUČIN.SKALARNI (a; b), v anglické verzi je to SUMPRODUCT(a, b), kde a, b jsou bloky obsahující vektory, pro které se má vypočítat skalární součin. Pro výše uvedené omezení bude tedy leva strana vyjádřena jako =SOUČIN. SKALÁRNÍ (B3:B10;H3:H10).

Tento vzorec je ve spreadsheetu na Obr. 5.1 umístěn v buňce B15. Podobně v buňkách C15, D15 a E15 jsou skalární součiny vyjadřující levé strany zbývajících omezeni (bilance bílkovin, železa a vitaminu A). Jaké výrazy jsou zapsaný v buňkách B15, C15, D15 a E15, ukazuje přehledně následující tabulka.

omez. podmínka	buňka	Vzorec
energie	B15	=SOUČIN.SKALÁRNÍ(B3:B10;H3:H10)
bílkoviny	C15	=SOUČIN.SKALÁRNÍ(C3:C10;H3:H10)
železo	D15	=SOUČIN.SKALÁRNÍ(D3:D10;H3:H10)
Vitamín A	E15	=SOUČIN.SKALÁRNÍ(E3:E10;H3:H10)

Tabulka 1: Zápis omezujících podmínek ve spreadsheetu

Posledním krokem při přípravě vstupních dat ve spreadsheetu je definice optimalizačního kritéria - účelové funkce. Toto kritérium musí byt zapsáno rovněž ve tvaru vzorce a umístěno do některé z buněk. V našem přikladu je účelová funkce vyjádřena jako skalární součin vektoru cenových koeficientů (blok F3:F10) s vektorem proměnných (blok H3:H10). Tento součin zapíšeme pomoci funkce = SOUČIN. SKALÁRNÍ (F3:F10;H3:H10).

Na Obr. 1 je tento vzorec umístěn v buňce H15. Po ukončení přípravy vstupních dat lze aktivovat vlastni optimalizační modul. V Excelu je k tomuto účelu k dispozici položka menu Nástroje-Řešitel (Tools- Solver). Pokud se položka Řešitel v menu Nástroje nevyskytuje, potom je třeba aktivovat doplněk Řešitel z menu Nástroje-Doplňky. V nove verzi Excel 2007 se Řešitel doinstaluje tak, že po kliknuti Tlačítka Office zvolíte Možnosti aplikace Excel, pote zvolíte Doplňky, vyberete Řešitel a potvrdíte OK. Řešitele pak naleznete v hlavním menu v položce Data a Analýzy. Po spuštění řešitele, je třeba v dialogovém okně Parametry řešitele, které je uživateli zobrazeno, specifikovat následující informace.

Ukázka dialogového okna pro náš přiklad je na Obr. 2.

1. Kritérium optimality, tj. nastavit buňku (set cell). Jedna se o jedinou buňku obsahující vzorec, jejíž hodnota se bude optimalizovat. V naši úloze je optimalizační kritérium obsaženo v buňce H15.

2. Charakter kritéria optimality, tj. rovno: max, min, hodnota (equal to: max, min, value). Zde se urči to, zda se jedna o maximalizaci nebo minimalizaci účelové funkce nebo o řešení úlohy, ve které je cílem nalezeni požadované úrovně kritéria. K dispozici jsou možnosti:

- maximalizace kritéria (max),
- minimalizace kritéria (min), což odpovídá naši úloze,

• dosažení cílové hodnoty (value) - při teto volbě je třeba dále zadat cílovou hodnotu (value).

3. Oblast proměnných modelu, tj. měněné buňky (changing cells). Na Obr. 2 se jedna o oblast H3:H10.

4. Omezující podmínky (subject to the constraints)

Při definici nového či opravě již dříve zadaného omezení musí uživatel tedy určit tři položky:

• adresu buňky obsahující vzorec (cell reference), jehož výsledek musí byt menší, větší nebo roven omezující hodnotě; tento vzorec obsahuje v typickém případě proměnné modelu (odvolávky na buňky obsahující proměnné) nebo se může jednat přímo o buňku s proměnnou - na Obr. 2 se jedna o buňky v blocích B15:E15 a H3:H10, což je vlastně blok proměnných (kvůli definici dolních a horních mezi proměnných),

• typ omezení, což je jedna z možnosti \leq , =, \geq , celé (integer), tj. podmínka celočiselnosti nebo binární (binary), tj. podmínka, že proměnné budou nabývat pouze hodnot 0 nebo 1,

omezující hodnotu (constraint), která může být reprezentovaná buď buňkou obsahující numerickou hodnotu, nebo může byt přímo vložena z klávesnice jako konstanta - na Obr. 2 jsou tyto hodnoty vloženy postupně do buňky B14, do bloku buněk B13:E13 a buněk C18 a C19.

Parametry Řešitele			? ×
N <u>a</u> stavit buřku: \$H\$15	3		Ř <u>e</u> šit
Rovno: C Max C Min Měněné <u>b</u> uřky:	C <u>H</u> odnota:		Zavřít
\$H\$3:\$H\$10	<u> </u>	Odhad	
Omezují <u>cí</u> podmínka:			Možnosti
\$B\$15 <= \$B\$14 \$B\$15:\$E\$15 >= \$B\$13:\$E\$13	1	Přidat	
\$H\$3:\$H\$10 <= \$C\$19 \$H\$3:\$H\$10 >= \$C\$18		Změnit	En este de la
the second s		<u>O</u> dstranit	Vyn <u>u</u> lovat
1			Nápo <u>v</u> ěda

Obrázek 2: Parametry řešitele

Dialogové okno, které se zobrazí při postupném přidáváni nebo dodatečné úpravě omezujících podmínek, uvádíme na Obr. 3.

Obrázek 3: Zadávání omezujících podmínek

Omezující podmínky lze definovat buď samostatně, nebo v bloku. Pokud jsou definovaný v bloku, potom všechny buňky bloku musí splňovat zadanou relaci \leq , \geq nebo =. Výhodou je, že při definici v bloku může byt pravá strana omezení zapsaná také jako blok buněk. V případě, že se jedna o stejnou hodnotu pravých stran, např. 0, stačí vložit jedinou hodnotu. Kompletní podoba omezujících podmínek pro nás ilustrační přiklad je zřejmá z Obr. 2. Kdyby bylo třeba doplnit soustavu omezujících podmínek o podmínky celočiselnosti pro všechny proměnné (v

našem ilustračním přikladu to potřebné není), stačí tuto soustavu rozšířit o omezení ve tvaru H3.H10 celé (omezující hodnota se v tomto případě pochopitelně neuvádí).

Při zpracování konkrétní optimalizační úlohy může byt důležité nastavení určitých parametrů. Toto nastaveni se provádí pomoci položky Možnosti (options), která je součásti okna parametry řešitele (Obr. 4). Po aktivaci této položky je zobrazeno dialogové okno možnosti řešitele (viz Obr. 4). Z uživatelského hlediska postačí zmínit se pouze o vybraných položkách, uvedených v tomto okně.

Ma <u>xi</u> mální čas:	100 sekund	ОК
terace:	100	Storno
Přesnost:	0.000001	Načíst model
Tolerance:	5 %	Uložit model
Konvergence:	0.001	Nápo <u>v</u> ěda
🔽 Lineární <u>m</u> od	el 🗖 <u>A</u> uto	matické měřítko
🔽 Nezáporná č	ísla 🗌 Zobr	azit výsledek iterace
Extrapolace	Derivace	Metoda
Lineární	Standardní	Newtonova
C Kundratické	C Přecná	C Sdružená

Obrázek 4: Dialogové okno – Možnosti řešitele

1. Maximální čas (max time) zpracovaní. Je to hodnota ve vteřinách (standardně je nastaveno 100), po jejímž uplynuti je výpočet přerušen. Uživatel má potom možnost ve vypočtu dále pokračovat nebo jej definitivně ukončit. Maximální čas zpracování může byt nastaven až na 32767 vteřin (tj. cca 9 hod.).

2. Limitní počet iterací (iterations) je počet iteraci (standardně nastaveno 100), po jejímž uplynuti je vypočet přerušen a uživateli je nabídnuto řešení z poslední iterace. Uživatel se poté může opět rozhodnout o pokračování výpočtu nebo o jeho ukončeni. Limitní počet iteraci může byt nastaven až na hodnotu 32767. U obou uvedených limitů je však třeba podotknout, že u většiny běžných úloh stačí standardně nastavené hodnoty a není je tedy nezbytné nijak měnit.

3. Přesnost (precision) je konstanta, která udává přesnost, se kterou musí souhlasit leva a pravá strana omezující podmínky tak, aby byla považovaná tato podmínka za splněnou. Tato konstanta má význam především u nelineárních optimalizačních úloh, kterými se zde podrobněji nezabýváme. Je to hodnota blízká nule (standardní nastaveni je 0,000001). Její zvýšení může vest ke zrychlení výpočtu, ale ke snížení přesnosti výsledků.

4. Tolerance (tolerance) je procentní odchylka pro celočíselné řešeni. Zvýšení tolerance vede zpravidla ke snížení doby výpočtu celočíselného řešení. Toto snížení je však na úkor přesnosti. Pro úlohy, ve kterých nejsou definovaný podmínky celočiselnosti, nemá tato konstanta žádný význam.

5. Lineární model (linear model) je dvoupolohový přepínač, který je rozumné zapnout při řešení úloh lineárního programování (standardně tento přepínač není zapnutý). Pokud je ponecháno standardní nastaveni (tj. nelineární model), potom to vede u lineárních úloh k výraznému prodloužení doby zpracování a k jiné podobě výstupu výsledků než bude uvedeno dále. Pro lineární případ používá totiž systém k výpočtu standardní simplexovou metodu resp. metodu větveni a mezi pro řešení úloh LP s podmínkami celočiselnosti. Pro řešení nelineárních modelů je použit blíže nespecifikovaný iterační postup, zřejmě jistou podobu gradientní metody.

6. Nezáporná čísla (non-negative numbers) je dvoupolohový přepínač, jehož zapnutí má za následek, že jsou při výpočtu automaticky uvažovány podmínky nezápornosti. Tyto podmínky se potom nezadávají mezi běžnými omezujícími podmínkami. Při řešeni běžných úloh lineárního programovaní doporučujeme zapnout oba dva posledně zmíněné přepínače.

Po definici všech potřebných údajů v dialogovém okně parametry řešitele, případně v okně možnosti řešitele je možné spustit zpracování pomoci tlačítka řešit (solve). Vlastní vypočet může trvat, v závislosti na rozsahu řešené úlohy, na tom, zda jsou či nejsou v modelu zahrnuty podmínky celočiselnosti a na rychlosti počítače použitého pro zpracování, i několik minut. U běžných školních úloh, ve kterých bývá pouze několik málo proměnných a omezujících podmínek, je však výsledek zpracování k dispozici takřka okamžitě. Po ukončení vypočtu je zobrazeno dialogové okno (Obr. 5), ve kterém je informace, zda bylo či nebylo nalezeno řešení splňující všechny omezující podmínky (optimální řešeni). Uživatel má potom možnost zvolit, zda si přeje uchovat vypočtené řešení nebo vrátit původní hodnoty. Typická volba bude nejčastěji uchovat řešení. V takovém případě jsou optimální hodnoty proměnných umístěny do bloku proměnných a v návaznosti na to je vypočtena optimální hodnota účelové funkce. Kromě této základní podoby výstupu si může (ale nemusí) uživatel dále zvolit vystup podrobnějších informaci. Stačí, když v dialogovém okně výsledky řešení označí některé (nebo všechny) Zpráva (reports): Každá z vybraných zprav je potom umístěna do automaticky vygenerovaného samostatného listu. K dispozici jsou tři druhy "zpráv":

Výsledky řešení					<u> ? ×</u>
Řešitel nalezl řešení, kto podmínky.	eré splňuje vše	chny omezující	Zp <u>r</u> áv Výsled	a Iková	-
 Uchov<u>a</u>t řešení Obnovit původní h 		Citlivo Limitni	stní	V	
OK	Storno	Uložit scénář		Nápov	ĕda

Obrázek 5: Dialogové okno – výsledky řešení

1. Výsledková zpráva (answer report), která obsahuje jednak informace o původních a konečných hodnotách optimalizačního kritéria a proměnných modelu a jednak informace o vztahu levé a pravé strany omezujících podmínek. Pro všechny prvky modelu (kritérium optimality, proměnné, omezeni) je zde rovněž odkaz na odpovídající buňky spreadsheetu.

2. Citlivostní zpráva (sensitivity report) obsahuje intervaly stability pro cenové koeficienty (v české verzi MS Excelu je termín cenový koeficient chybně přeložen jako úkolový koeficient) a pro hodnoty pravé strany omezujících podmínek. V první tabulce teto zprávy (viz Obr. 6) je pro každou proměnnou uveden její název, hodnota, redukovaný cenový koeficient (snížené náklady), cenový (cílový) koeficient a interval stability pro tento koeficient, který je definovány povoleným nárůstem a poklesem. Tento interval stability určuje, v jakém rozmezí se může měnit cenový koeficient, aniž by se změnilo optimální řešení úlohy. Druha tabulka citlivostní zprávy obsahuje pro každou omezující podmínku její název, hodnotu levé a pravé strany (konečná hodnota a pravá strana podmínky), stínovou cenu a interval stability pro hodnotu pravé strany ve formě povoleného nárůstu a poklesu.

3. Limitní zpráva (limit report) uvádí, jak se mění hodnota optimalizačního kritéria při změně hodnot proměnných v zadaných mezích.

	licrosoft E:	xcel - VÝŽIVA.XLS						5
	Soubor Úp	r <u>avy Z</u> obrazit Vložit Eom	nát <u>N</u> ástroje DE	A <u>D</u> ata <u>O</u> kno	Nápo <u>v</u> ěda			
D	📽 🖬 🖉	a 🖪 🖏 🌮 👗 🖻 🛍	🚿 🖬 • 🖓	- 🍓 Σ f *	2 3 100%	• 2 .		
Ari	al CE	× 10 × B Z	п = = :	= 53 S 2	< 000 *29 200 F≡ F≡	A	-	
1	87	¥ = \$H\$3	2 = = -	= = = •• •	0 000 ,00 + 00 == ==	<u> </u>	· •	
	A B	C	D	F	F	G	Н	1
1	Microsoft	Excel 9.0 Citlivostní z	práva	-		0		
2								
3	1							
4	Měněné	buňky						
5			Konečná	Snížené	Cílový	Povolený	Povolený	
6	Buňka	Název	hodnota	náklady	koeficient	nárůst	pokles	
7	\$H\$3	Maso vepř. x 100 g	1.65	0.00	12	1.918940984	2.466686059	
8	\$H\$4	Máslo x 100 g	3.28	0.00	11.2	7.387078435	15.91396055	
9	\$H\$5	Chléb x 100 g	3.14	0.00	1.5	1.575238833	10.89605693	
10	\$H\$6	Brambory x 100 g	4.00	-1.73	0.7	1.72645115	1E+30	
11	SH\$7	Jabika x 100 g	4.00	-0.41	1.8	0.409076546	1E+30	
12	<u>\$H\$8</u>	Sýr eidam x 100 g	1.00	3.24	10.6	1E+30	3.236017343	
13	\$H\$9	Kuře x 100 g	1.00	0.88	6.5	1E+30	0.882323589	
14	<u>\$H\$10</u>	Jogurt bílý x 100 g	1.00	1.48	3.2	1E+30	1.475080201	
15								
16	Omezujio	ci podminky						
17			Konečná	Stinová	Omezující podmínka	Povolený	Povolený	
18	Bunka	Název	hodnota	cena	Pravá strana	nárúst	pokles	
19	\$B\$15	návrh kJ	20000	0	15000	5000	1E+30	
20	\$C\$15	návrh xxx	119.8437546	0	80	39.8437546	1E+30	
21	SD\$15	navrh xxx	15	4.542216916	15	4.836163265	1.496882759	
22	\$E\$15	navrh xxx	10000	0.006323975	10000	1069.300993	627.1238278	
23	\$8\$15	navrh kj	20000	-0.00183946	20000	1222068018	1033.569326	
24								

Obrázek 6: Citlivostní zpráva

V tabulce na Obr. 6 jsou k dispozici podrobné výsledky optimalizace našeho přikladu.

Pro úplnost budeme tyto výsledky interpretovat:

• v denní dávce bude 165 g vepřového masa, 328 g másla, 314 chleba, po 400 g brambor a jablek a po 100 g eidamu, jogurtu a kuřecího masa,

pokud by se cena potravin snížila/zvýšila alespoň o hodnotu redukovaných cen, potom by bylo efektivní mít tyto potraviny v návrhu ve množství vyšším než minimálním případně nižším než maximálním (např. pokud by cena u eidamu klesla z 10,60 Kč minimálně o 3,24 Kč, potom by byl tento sýr v návrhu ve vyšším množství než 100 g),

• energie je v návrhu výživy na horní hranici, tj. 20000 kJ, bílkoviny jsou překročeny téměř o 40 g, železo a vitamin A jsou přesně na minimálně požadovaném množství,

výpočtem se lze snadno přesvědčit, že cena navržené dávky výživy je přibližně 91,50 Kč; požadavek na zvýšení obsahu železa o 1 mg povede ke zvýšení celkové ceny o 4,54 Kč (stínová cena pro železo); podobně pro vitamin A - požadavek na zvýšení o 1000 jednotek povede ke zvýšení ceny denní dávky o 6,32 Kč.

Vlastnosti optimalizačního modulu v Excelu nejsou nijak mimořádné. Výpočetní zkušenosti však ukazuji, že při jisté dávce trpělivosti lze pomoci tohoto modulu zpracovat poměrně spolehlivě i úlohy LP s mezními rozměry (200 proměnných, 200 omezeni) za předpokladu, že model neobsahuje podmínky celočiselnosti. V úlohách s podmínkami celočiselnosti se doba výpočtu neúměrně prodlužuje. Zkušenosti ukazuji, že se často nelze dočkat výsledku ani v případě, že celočíselných proměnných je vice než 20.