FPF:UIBUC12 Introduction to Logic - Course Information
UIBUC12 Introduction to Logic
Faculty of Philosophy and Science in OpavaSummer 2016
- Extent and Intensity
- 2/2/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Luděk Cienciala, Ph.D. (lecturer)
Mgr. Marek Menšík, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Luděk Cienciala, Ph.D.
Institute of Computer Science – Faculty of Philosophy and Science in Opava - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Computer science in combination with another discipline (programme FPF, B1803 InDO)
- Computer science in combination with another discipline (programme FPF, B6107 HuSt)
- Course objectives
- The course is aimed to propositional logic and first order predicate logic.
- Syllabus
- - Introduction to Logic, symbolic language, special symbols and logical.
- Propositional logic. The language of propositional logic (alphabet and grammar). Definition clutches of propositional logic conversion from natural language into symbolic language of propositional logic. Semantics of propositional logic: truth valuation, tautology, contradiction, feasibility; propositional logic entailment; semantic methods of propositional logic, Decidability of logical truthfulness. Complete system couplings propositional logic: theorem on representation; Normal forms of formulas of propositional logic; sentence of functional completeness; logical consequences of a set of formulas.
- First order predicate logic. Correct judgments that can not be analyzed on the basis of propositional logic. Language 1st order predicate logic. Free and bound variables, substitutability terms for variables. Semantics 1st order predicate logic. Converting from natural language into symbolic language of predicate logic. Satisfiability of formulas, logical truthfulness, contradiction. Logical entailment. Tautology 1st order predicate logic. The traditional Aristotelian logic.
- - Introduction to Logic, symbolic language, special symbols and logical.
- Literature
- recommended literature
- Švejdar, V. Logika: neúplnost, složitost a nutnost. Praha, Academia, 2002. info
- Sochor, A. Klasická matematická logika. Praha, Univerzita Karlova, 2001. info
- Štěpánek, P. Matematická logika. Prraha, Univerzita Karlova, 2000. info
- Jirků, P., Vejnarová, V. Neformální výklad základů formální logiky. VŠE Praha, 2000. URL info
- Lukasová, A.:. Logické základy umělé inteligence I. Ostrava, 1999. info
- Gahér, F. Logika pro každého. Bratislava, IRIS, 1998. info
- Gahér, F. Logické hádanky a paradoxy. Bratislava, IRIS, 1997. info
- Štěpán, J. Logika a logické systémy. Olomouc, Votobia, 1992. info
- Manna, Z. Matematická teorie programů. Praha, SNTL, 1981. info
- Teaching methods
- Interactive lecture
Lecture with a video analysis - Assessment methods
- Exam
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
- Teacher's information
- Credit: full-time students wrote the exercises two credit tests scoring 20 points each.
Exam: Total of examination exam can earn 60 points. For the successful completion students need to get 30 points. Mark for full-time study is determined by adding the points for the exam and points that the student earned during the semester in the course. Mark the combined study is determined from the points gained from examination test.
- Enrolment Statistics (Summer 2016, recent)
- Permalink: https://is.slu.cz/course/fpf/summer2016/UIBUC12