UFTF001 Speciální teorie relativity

Filozoficko-přírodovědecká fakulta v Opavě
léto 2021
Rozsah
4/2/0. 6 kr. Ukončení: zk.
Vyučující
doc. RNDr. Stanislav Hledík, Ph.D. (přednášející)
RNDr. Martin Blaschke, Ph.D. (cvičící)
RNDr. Kateřina Klimovičová, Ph.D. (cvičící)
doc. RNDr. Petr Slaný, Ph.D. (přednášející)
RNDr. Daniel Charbulák, Ph.D. (cvičící)
Garance
doc. RNDr. Stanislav Hledík, Ph.D.
Centrum interdisciplinárních studií – Filozoficko-přírodovědecká fakulta v Opavě
Rozvrh
Út 9:45–11:20 SM-UF
  • Rozvrh seminárních/paralelních skupin:
UFTF001/A: Čt 13:55–15:30 B4, D. Charbulák
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Přednáška seznamuje se základy speciální teorie relativity na úrovni zajištující průpravu pro přednášku F 1U 301. Výklad je propojen s přednáškou F 1U 106. Sylabus (platí pro přednášku i cvičení) Rekapitulace newtonovské mechaniky. Souřadnicové soustavy, absolutní čas a absolutní vzdálenost; inerciální systém; Newtonovy pohybové rovnice, hmotnost; Galileiho princip relativity, Galileiho transformace a kovariance Newtonových pohybových rovnic vůči nim, actio in distans; narušení Galileiho principu relativity elektromagnetickými jevy, nekovariance Maxwellových rovnic vůči Galileiho transformacím; éter, pokusy o zjištění pohybu Slunce a Země vůči éteru, aberace stálic, pokus Römerova typu, Michelsonův pokus, Kennedyho-Thorndikeův pokus; Machův princip. Postuláty speciální teorie relativity. Inerciální systém, Einsteinův princip relativity, princip univerzálnosti rychlosti světla; synchronizace hodin, relativnost současnosti, definice délky, dilatace času a její experimentální důkazy, kontrakce délek. Kinematika speciální teorie relativity. Lorentzova transformace; speciální Lorentzova grupa; transformace složek rychlosti a zrychlení; interval a absolutní oblasti prostoročasu, kauzalita; Lorentzova transformace pro libovolný směr rychlosti (boost) a její vlastnosti; infinitezimální Lorentzova transformace; Thomasova precese. Minkowskiho prostoročas. Geometrická interpretace speciální Lorentzovy transformace; světočáry, světová trubice; plochy a nadplochy v prostoročase; obecná Lorentzova grupa a její podgrupy; tenzory v Minkowskiho prostoročase; metrický tenzor; transformační vlastnosti tenzoru; 4-rychlost a 4-zrychlení; integrování v Minkowského prostoročase. Relativistická mechanika a elektrodynamika. Akční funkce a lagrangián (hustota lagrangiánu) systému { elektromagnetické pole + elektrické náboje }, Maxwellovy rovnice a pohybová rovnice náboje v elektromagnetickém poli; hmotnost, energie a hybnost, 4-hybnost; síla, 4-síla, Lorentzova 4-síla; rovnoměrné zrychlený pohyb; srážky částic; Comptonův jev; vztah mezi hmotností, energií a hybností; tenzor energie-hybnosti; základy relativistické hydrodynamiky; relativistický Ciolkovského vzorec. 4-vektor proudové hustoty, 4-potenciál, 4-tenzor elektromagnetického pole, zápis Maxwellových rovnic do kovariantní formy; pohyb nabité částice ve vnějším elektromagnetickém poli; invarianty elektromagnetického pole; rovinná elektromagnetická vlna, vlnový 4-vektor; Dopplerův jev a aberace; optický vzhled relativistickou rychlostí se pohybujících objektů.
Další komentáře
Studijní materiály
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je zařazen také v obdobích léto 2014, léto 2015, léto 2016, léto 2017, léto 2018, léto 2019, léto 2020, léto 2022, léto 2023, léto 2024.