UF03480 Introduction to Particle Physics I

Faculty of Philosophy and Science in Opava
Winter 2014
Extent and Intensity
2/2/0. 8 credit(s). Type of Completion: zk (examination).
Teacher(s)
prof. Ing. Peter Lichard, DrSc. (lecturer)
prof. Ing. Peter Lichard, DrSc. (seminar tutor)
Guaranteed by
prof. Ing. Peter Lichard, DrSc.
Centrum interdisciplinárních studií – Faculty of Philosophy and Science in Opava
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
The aim of the course is to provide students with basic information about the current state of knowledge about the structure and interactions of subnuclear particles. The presentation is phenomenological and historical and is based on experimental results that led to the current state of knowledge.
Syllabus
  • Outline of the history and current state of particle physics. Key discoveries, experiments and ideas; the structure and interactions of particles. Leptons, quarks, gauge bosons, hadrons; mesons and baryons; stable and unstable particles, resonances. Antiparticles.
    Kinematics of collisions and decays. Conservation laws, relativistic invariants. Cross section, luminosity. Longitudinal and transverse momentum, rapidity. Lifetime, differential decay width. Branching fraction and branching ratio. Dalitz plot.
    Experimental methods of particle physics. Basic principle and types of accelerators. Linear accelerators electrostatic and radiofrequency; circular accelerators of electrons, protons and heavy ions. Primary and secondary beams. Targets. Accumulators and colliders, accelerator complexes. Physical principles and characteristics of detectors; the most important types of detectors; calorimeters and spectrometers. Detector complexes.
    Properties of hadrons. Mass, charge, spin, baryon number, spatial (P) parity, isospin and its third component, charge (C) parity, G parity. Conservation laws in strong, electromagnetic and weak interactions of hadrons.
    Properties of leptons. Lepton numbers, experimental proof of the non-identity of the electron neutrino and antineutrino, that of electron and muon antineutrino. The number of neutrino families; possible nonconservation of lepton numbers, neutrino oscillation; the neutrinos from the Sun.
Literature
    recommended literature
  • Dosch, H.G. Za hranicemi nanosvěta. Leptony, kvarky, kalibrační bosony. Academia, 2011. ISBN 978-80-200-1871-7. info
  • Close F. Částicová fyzika. Praha, 2008. ISBN 978-80-7363-160-4. info
  • Žáček J. Úvod do fyziky elementárních částic. Nakladatelství Karolinum, 2005. ISBN 9788024611099. info
  • Close F. - Marten M. - Sutton C. The Particle Odyssey. Oxford University Press, 2002. ISBN 978-0198609438. info
  • Úlehla I. - Suk M. - Trka Z. Atomy, jádra, částice. Academia, 1990. ISBN 8020001352. info
Teaching methods
Lectures, tutorial sessions, regularly assigned and evaluated home tasks.
Assessment methods
Credit
Active participation on tutorial sessions and the timely completion of home tasks is required. Detailed criteria will be announced by the tutorial lecturer. The exam consists of the main written part and a supplemental oral part.
Language of instruction
Czech
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
Teacher's information
The attending of lectures is recommended, that of tutorial sessions is compulsory. If a student was absent for serious reasons, the teacher may prescribe him/her an alternative way of fulfilling the duties.
The course is also listed under the following terms Winter 1993, Winter 1994, Winter 1995, Winter 1996, Winter 1997, Winter 1998, Winter 1999, Winter 2000, Winter 2001, Winter 2002, Winter 2003, Winter 2004, Winter 2005, Winter 2006, Winter 2007, Winter 2008, Winter 2009, Winter 2010, Winter 2011, Winter 2012, Winter 2013.
  • Enrolment Statistics (recent)
  • Permalink: https://is.slu.cz/course/fpf/winter2014/UF03480