INMBAOAN Operational Analysis for Economists

Obchodně podnikatelská fakulta v Karviné
léto 2015
Rozsah
2/1/0. 4 kr. Ukončení: zk.
Vyučující
Ing. Elena Mielcová, Ph.D. (přednášející)
prof. RNDr. Jaroslav Ramík, CSc. (přednášející)
Ing. Elena Mielcová, Ph.D. (cvičící)
Ing. Radomír Perzina, Ph.D. (cvičící)
Garance
prof. RNDr. Jaroslav Ramík, CSc.
Katedra informatiky a matematiky – Obchodně podnikatelská fakulta v Karviné
Kontaktní osoba: Mgr. Radmila Krkošková, Ph.D.
Předpoklady
K absolvování předmětu nejsou vyžadovány žádné podmínky a předmět může být zapsán nezávisle na jiných předmětech.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Poskytnout základní matematické metody k modelování ekonomických situací. Zvládnout teoretický základ vybraných metod a modelů a naučit se používat Excel, Solver a program QSB k řešení úloh operačního výzkumu.
Osnova
  • 1. Podstata a metody operační analýzy
    2. Ekonomický a matematický model úlohy lineárního programování a jejich grafická interpretace
    3. Řešení úloh lineárního programování
    4. Aplikace lineárního programování
    5. Dualita v úlohách lineárního programování
    6. Dopravní problém
    7. Celočíselné lineární programování
    8. Optimalizační úlohy na grafech
    9. Řízení projektů 1: Časová analýza
    10. Řízení projektů 2: PERT a GERT
    11. Řízení projektů 3: náklady a zdroje
    12. Řízení projektů: uzlově definované síťové grafy
    13. Modely hromadné obsluhy
    1. Podstata a metody operační analýzy
    Podstata operační analýzy, jednotlivé fáze aplikace operační analýzy, klasifikace disciplín operační analýzy.
    2. Ekonomický a matematický model úlohy lineárního programování a jejich grafická interpretace
    Ekonomický a matematický model, ekonomická podstata jednotlivých částí matematického modelu, základní pojmy lineárního programování (LP), grafické znázornění množiny přípustných řešení úlohy LP o dvou proměnných a řešení úlohy.

    3. Řešení úloh lineárního programování
    Princip simplexové metody, stanovení počtu optimálních řešení úlohy LP, řešení úlohy LP s využitím Excelu - Řešitele, řešení úlohy LP s využitím QSB.
    4. Aplikace lineárního programování
    Sestavení matematického modelu úloh těchto typů: úloha o dělení materiálu, nutriční problém, finanční analýza projektů, portfolio model, model výrobního plánování, řešení modelů pomocí Excelu a QSB, interpretace výsledků.
    5. Dualita v úlohách lineárního programování
    Dualita jako vztah mezi dvěma úlohami LP, vytvoření úlohy duální, vztahy mezi primární a duální úlohou, ekonomická interpretace optimálních řešení duálně sdružených úloh, princip analýzy citlivosti (postoptimalizační analýzy).
    6. Dopravní problém
    Ekonomický model dopravního problému, matematický model dopravního problému, počáteční řešení dopravního problému, aplikace dopravního problému na úlohy rozvrhování výroby, řešení dopravního problému v Excelu a QSB.
    7. Celočíselné lineární programování
    Význam podmínek celočíselnosti a bivalentnosti, kdy v dopravním problému existuje celočíselné optimální řešení, přiřazovací problém, hlavní principy řešení úloh celočíselného programování, řešení úlohy CLP malých rozměrů pomocí Excelu - Řešitele a QSB.
    8. Optimalizační úlohy na grafech
    Základní pojmy z teorie grafů, nalezení minimální kostry grafu, nejkratší cesty v síti, maximální tok v jednoduché síti, řešení optimalizačních problémů na grafech pomocí QSB.
    9. Řízení projektů 1: Časová analýza
    Síťový graf projektu, analýza projektu metodou kritické cesty - CPM tabulkovým způsobem, analýza projektu metodou kritické cesty - CPM s využitím PC a programu QSB.
    10. Řízení projektů 2: PERT a GERT
    Analýza projektu metodou PERT, základní charakteristiky analýzy projektu, a to střední hodnota trvání činnosti, směrodatná odchylka trvání činnosti, střední hodnota trvání projektu a směrodatná odchylka trvání projektu, pravděpodobnost, že projekt bude splněn v čase, který nepřekročí plánovaný čas.
    11. Řízení projektů 3: náklady a zdroje, uzlově definované síťové grafy
    Náklady na realizaci činností, základní principy nákladových modelů, optimalizace nákladů u jednoduchých síťových projektů ručně i pomocí programu QSB.
    12. Řízení projektů 3: uzlově definované síťové grafy
    Problémy agregace a desagregace síťových grafů, možnosti uzlově definovaných síťových grafů.
    13. Modely hromadné obsluhy
    Sy
Literatura
    doporučená literatura
  • ALEVRAS, D., PADBERG, M. W. Linear Optimization and Extensions Problems and Solutions. Berlin: Springer, 2001. ISBN 3-540-41744-3. info
  • SYDSAETER, K. STORM, A., BERCK, P. Economists' Mathematical Manual. Berlin: Springer, 2000. ISBN 3-540-65447-X. info
  • WILLIAMS, H. P. Model Building Mathematical Programming. Chichester: John Wiley & Sons, 1993. ISBN 0-471-94111-5. info
  • TAHA, H. A. Operations Research An Introduction. Englewood Cliffs: Prentice Hall, 1992. ISBN 0-13-187659-7. info
Výukové metody
Demonstrace dovedností
Seminární výuka
Metody hodnocení
Písemná zkouška
Vyučovací jazyk
Angličtina
Informace učitele
seminární práce, 70% účast na seminářích, forma zkoušky: písemná
AktivityNáročnost [h]
Ostatní studijní zátěž41
Přednáška26
Seminář13
Zkouška40
Celkem120
Další komentáře
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je zařazen také v obdobích zima 2014, zima 2015, léto 2016, zima 2016, léto 2017, zima 2017, léto 2018, zima 2018, léto 2019.