MU:MU03262 Intr. to the Theory of Lie Gr. - Course Information
MU03262 Introduction to the Theory of Lie Groups
Mathematical Institute in OpavaSummer 2013
- Extent and Intensity
- 2/2/0. 6 credit(s). Type of Completion: zk (examination).
- Guaranteed by
- prof. RNDr. Artur Sergyeyev, Ph.D., DSc.
Mathematical Institute in Opava - Prerequisites
- MU/03038
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematical Analysis (programme MU, M1101)
- Mathematical Analysis (programme MU, N1101)
- Secondary School Teacher Traning in Physics and Mathematics (programme FPF, M1701 Fyz)
- Secondary School Teacher Training in Mathematics (programme FPF, M7504)
- Course objectives (in Czech)
- Předmět slouží k získání základní představy o struktuře obecné Lieovy grupy a o její akci na varietě. Předmět je zakončen zkouškou a zápočtem.
- Syllabus
- - The concept of a Lie group. Analytical, continuous and smooth groups. Hilbert's fifth problem.
- Local theory of Lie groups.
- Lie algebras. Tangent Lie algebra of a Lie group. Classification of simple Lie algebras.
- General linear group and its subgroups. Linear representations. The Ado theorem.
- The Baker-Campbell-Hausdorff formula.
- Differential geometry of Lie groups. Left- and right-invariant vector fields and differential forms. One-dimensional Lie subgroups. Solution of the Maurer-Cartan equations. Exponential map.
- The global theory of Lie groups. The Cartan theorem. Construction of all Lie groups for a given tangent Lie algebra. Lie groups which have no faithful linear representations.
- Transformation groups of manifolds and their actions. The fundamental vector fields. Principal bundles.
- - The concept of a Lie group. Analytical, continuous and smooth groups. Hilbert's fifth problem.
- Literature
- recommended literature
- K. Erdmann, M. Wildon. Introduction to Lie algebras. Springer, 2006. info
- C. Isham. Modern Differential Geometry for Physicists. Singapore, 1999. info
- P.J. Olver. Equivalence, Invariants and Symmetry. 1995. info
- M. M. Postnikov. Gruppy i algebry Li. Nauka, Moskva, 1982. info
- N. Bourbaki. Lie groups and Lie algebras. Herman, Paris, 1975. info
- L. S. Pontrjagin. Nepreryvnye gruppy. Nauka, Moskva, 1973. info
- N. Jacobson. Lie algebras. J. Wiley-Interscience, London, 1962. info
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
- Teacher's information
- Oral exam; further requirements to be specified in the course of the semester.
- Enrolment Statistics (Summer 2013, recent)
- Permalink: https://is.slu.cz/course/sumu/summer2013/MU03262