MU:MU03027 Complex Analysis - Course Information
MU03027 Complex Analysis
Mathematical Institute in OpavaWinter 2007
- Extent and Intensity
- 2/2/0. 6 credit(s). Type of Completion: zk (examination).
- Guaranteed by
- doc. RNDr. Kristína Smítalová, CSc.
Mathematical Institute in Opava - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Mathematics (programme MU, B1101)
- Geometry (programme MU, M1101)
- Mathematical Analysis (programme MU, M1101)
- Mathematical Analysis (programme MU, N1101)
- Mathematical Physics (programme MU, N1101)
- Mathematics (programme MU, B1101)
- Theoretical Physics (programme FPF, N1701 Fyz)
- Physics for Secondary School Teachers (programme FPF, M1701 Fyz)
- Course objectives (in Czech)
- V předmětu studenti získají základní znalosti z komplexní analýzy nutné jak pro další studium matematiky, tak také pro absolvování předmětu Komplexní analýzy. Svým obsahem pak pokrývá část znalostí uvedených v Požadavcích ke státním závěrečným zkouškám.
- Syllabus (in Czech)
- 1. Zobrazení a derivace v komplexním oboru - komplexní rovina (různé tvary komplexních čísel, vlastnosti), derivace (definice, analytická funkce, Cauchy-Riemannovy rovnice), konformní zobrazení (lineární zobrazení, Möbiova transformace, exponenciální zobrazení, mocninné zobrazení, Žukovského funkce).
2. Komplexní integrály - křivkový integrál v C (definice, základní vlastnosti), Cauchyho integrální věta, nezávislost na integrační cestě, Cauchyho integrální vzorec, derivace analytické funkce, věta Morerova, věta Liouvilleova.
3. Taylorovy a Laurentovy řady, singularity - mocninné řady (poloměr konvergence, analytická funkce a její derivace), Taylorovy řady (věta Taylorova, Taylorovy řady elementárních funkcí), Laurentovy řady (věta Laurentova), klasifikace singulárních bodů, chování funkce v blízkosti singulárních bodů.
4. Integrování pomocí reziduí - reziduum (definice, výpočet reziduí v pólech), reziduová věta, výpočet reálných integrálů.
5. Laplaceova transformace - definice, vlastnosti (linearita, existence, jednoznačnost), Laplaceova transformace derivace, posunutí po ose s, resp. po ose t (F(s-a), f(t-a)).
- 1. Zobrazení a derivace v komplexním oboru - komplexní rovina (různé tvary komplexních čísel, vlastnosti), derivace (definice, analytická funkce, Cauchy-Riemannovy rovnice), konformní zobrazení (lineární zobrazení, Möbiova transformace, exponenciální zobrazení, mocninné zobrazení, Žukovského funkce).
- Literature
- recommended literature
- J. Smítal, P. Šindelářová. Komplexní analýza. MÚ SU, Opava, 2002. info
- E. Kreyszig. Advanced Engineering Mathematics. Wiley, New York, 1983. info
- R. V. Churchill, J. W. Brown, R. F. Verhey. Complex Variables and Applications. Mc Graw-Hill, New York, 1976. info
- I. Kluvánek, L. Mišík, M. Švec. Matematika II. SNTL, 1961. info
- I. I. Privalov. Úvod do teorie funkcí komplexní proměnné. Fizmatgiz, 1960. info
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
- Enrolment Statistics (Winter 2007, recent)
- Permalink: https://is.slu.cz/course/sumu/winter2007/MU03027