2017
Existential generalization in TIL
MENŠÍK, Marek, Jakub KERMASCHEK a Luděk CIENCIALAZákladní údaje
Originální název
Existential generalization in TIL
Autoři
MENŠÍK, Marek (203 Česká republika, garant, domácí), Jakub KERMASCHEK (203 Česká republika) a Luděk CIENCIALA (203 Česká republika, domácí)
Vydání
Volume 17. Sofia, International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, od s. 311-318, 8 s. 2017
Nakladatel
International Multidisciplinary Scientific Geoconference
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Bulharsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Kód RIV
RIV/47813059:19240/17:A0000111
Organizační jednotka
Filozoficko-přírodovědecká fakulta v Opavě
ISBN
978-619-7408-01-0
ISSN
Klíčová slova anglicky
Deduction; Existential Generalization; Extension; Hyperintension; Intension; Logic; TIL
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 28. 3. 2018 14:15, Mgr. Kamil Matula, Ph.D.
Anotace
V originále
The paper deals with the fundamental rule of extensional logics, namely the rule of Existential Generalization. This rule can be applied in the situation when a function f is applied on its argument a to obtain the value of f at a. If the application does not fail, i.e., if the function f is defined at a, then we can existentially quantify, and derive that there is the value f(a). Our system is based on Transparent Intensional Logic (TIL). Since TIL is a hyperintensional, partial, typed lambda calculus, we examine the validity of the rule in TIL, or rather in its computational variant the TIL-Script language. The rule is context sensitive in the sense that depending on a context we should recognize the type of entity to be abstracted over. This is not to say that the rule can be invalid dependently on context; the rule is valid universally. Only that the type of the argument over which we quantity depends on the context. There are three kinds of contexts to be distinguished, namely extensional, intensional and hyperintensonal. We introduce the definition of these three kinds of context and an algorithm that recognizes in which context a particular construction occurs so that the Existential Generalization can be validly applied. The tool navigates users through the correct application of the deduction rules.