J 2017

Super-spinning compact objects and models of high-frequency quasi-periodic oscillations observed in Galactic microquasars II. Forced resonances

KOTRLOVÁ, Andrea, Eva ŠRÁMKOVÁ, Gabriel TÖRÖK, Zdeněk STUCHLÍK, Kateřina GOLUCHOVÁ et. al.

Základní údaje

Originální název

Super-spinning compact objects and models of high-frequency quasi-periodic oscillations observed in Galactic microquasars II. Forced resonances

Autoři

KOTRLOVÁ, Andrea (203 Česká republika, garant, domácí), Eva ŠRÁMKOVÁ (203 Česká republika, domácí), Gabriel TÖRÖK (203 Česká republika, domácí), Zdeněk STUCHLÍK (203 Česká republika, domácí) a Kateřina GOLUCHOVÁ (203 Česká republika, domácí)

Vydání

Astronomy & Astrophysics, 2017, 0004-6361

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Francie

Utajení

není předmětem státního či obchodního tajemství

Kód RIV

RIV/47813059:19240/17:A0000007

Organizační jednotka

Filozoficko-přírodovědecká fakulta v Opavě

UT WoS

000415265200006

Klíčová slova anglicky

X-rays: binaries; black hole physics; accretion; accretion disks

Příznaky

Mezinárodní význam, Recenzováno

Návaznosti

GA17-16287S, projekt VaV. GB14-37086G, projekt VaV. LTI17018, projekt VaV.
Změněno: 9. 4. 2018 04:12, RNDr. Jan Hladík, Ph.D.

Anotace

V originále

In our previous work ( Paper I) we applied several models of high-frequency quasi-periodic oscillations (HF QPOs) to estimate the spin of the central compact object in three Galactic microquasars assuming the possibility that the central compact body is a superspinning object ( or a naked singularity) with external spacetime described by Kerr geometry with a dimensionless spin parameter a equal to cJ/GM^(2) > 1. Here we extend our consideration, and in a consistent way investigate implications of a set of ten resonance models so far discussed only in the context of a < 1. The same physical arguments as in Paper I are applied to these models, i.e. only a small deviation of the spin estimate from a = 1, a greater than or similar to 1, is assumed for a favoured model. For five of these models that involve Keplerian and radial epicyclic oscillations we find the existence of a unique specific QPO excitation radius. Consequently, there is a simple behaviour of dimensionless frequency M x nu_(U)(a) represented by a single continuous function having solely one maximum close to a greater than or similar to 1. Only one of these models is compatible with the expectation of a greater than or similar to 1. The other five models that involve the radial and vertical epicyclic oscillations imply the existence of multiple resonant radii. This signifies a more complicated behaviour of M x nu_(U)(a) that cannot be represented by single functions. Each of these five models is compatible with the expectation of a greater than or similar to 1.