J 2017

Polytropic spheres containing regions of trapped null geodesics

NOVOTNÝ, Jan, Jan HLADÍK a Zdeněk STUCHLÍK

Základní údaje

Originální název

Polytropic spheres containing regions of trapped null geodesics

Autoři

NOVOTNÝ, Jan (203 Česká republika, garant, domácí), Jan HLADÍK (203 Česká republika, domácí) a Zdeněk STUCHLÍK (203 Česká republika, domácí)

Vydání

Physical Review D, 2017, 2470-0010

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Kód RIV

RIV/47813059:19240/17:A0000026

Organizační jednotka

Filozoficko-přírodovědecká fakulta v Opavě

UT WoS

000396026700001

Klíčová slova anglicky

extremely compact objects; polytropic spheres; trapped null geodesics; optical reference geometry

Příznaky

Mezinárodní význam, Recenzováno

Návaznosti

GB14-37086G, projekt VaV.
Změněno: 4. 4. 2018 15:16, RNDr. Jan Hladík, Ph.D.

Anotace

V originále

We demonstrate that in the framework of standard general relativity, polytropic spheres with properly fixed polytropic index n and relativistic parameter sigma, giving a ratio of the central pressure p_(c) to the central energy density rho_(c), can contain a region of trapped null geodesics. Such trapping polytropes can exist for n > 2.138, and they are generally much more extended and massive than the observed neutron stars. We show that in the n-sigma parameter space, the region of allowed trapping increases with the polytropic index for intervals of physical interest, 2.138 < n < 4. Space extension of the region of trapped null geodesics increases with both increasing n and sigma > 0.677 from the allowed region. In order to relate the trapping phenomenon to astrophysically relevant situations, we restrict the validity of the polytropic configurations to their extension rextr corresponding to the gravitational mass M similar to 2M_(circle dot) of the most massive observed neutron stars. Then, for the central density rho(c) similar to 10^(15) g cm^(-3), the trapped regions are outside r_extr for all values of 2.138 < n < 4; for the central density rho_(c) similar to 5 x 10^(15) g cm^(-3), the whole trapped regions are located inside r_(extr) for 2.138 < n < 3.1; while for rho_(c) similar to 10^(16) g cm^(-3), the whole trapped regions are inside r_(extr) for all values of 2.138 < n < 4, guaranteeing astrophysically plausible trapping for all considered polytropes. The region of trapped null geodesics is located close to the polytrope center and could have a relevant influence on the cooling of such polytropes or binding of gravitational waves in their interior.