2018
The concept of an artificial neural network for the classification of atheromous plaques from digitized segmented histological images
BLAHUTA, Jiří, Petr ČERMÁK a Jakub SKÁCELZákladní údaje
Originální název
The concept of an artificial neural network for the classification of atheromous plaques from digitized segmented histological images
Autoři
BLAHUTA, Jiří (203 Česká republika, garant), Petr ČERMÁK (203 Česká republika) a Jakub SKÁCEL (203 Česká republika, domácí)
Vydání
New York, ICENCO 2018 - 14th International Computer Engineering Conference: Secure Smart Societies, od s. 22-25, 4 s. 2018
Nakladatel
IEEE
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
20200 2.2 Electrical engineering, Electronic engineering, Information engineering
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Kód RIV
RIV/47813059:19240/18:A0000316
Organizační jednotka
Filozoficko-přírodovědecká fakulta v Opavě
ISBN
978-1-5386-5117-9
ISSN
Klíčová slova anglicky
ANN; Atheromatous plaque; Histological patterns; Image segmentation; Neural Networks
Štítky
Změněno: 26. 3. 2019 09:31, Mgr. Kamil Matula, Ph.D.
Anotace
V originále
This paper is dedicted to the concept of an artificial neural network (ANN) for the classification of atheromatous plaque based on digitized histological patterns of areas segmented by means of the Region Growing algorithm. For this purpose, a multi-layered feedforward ANN with supervised learning has been used to successfully classify the segmented areas accordingly. The first phase is focused to find an optimal method for image segmentation. The Region Growing algorithm allows us to separate continuously segmented regions. For each region, appropriate features are selected, which are put into the neural network. The goal of the ANN is to classify plaque patterns into four classes according to their features. The classes represent the following types of plaque: homogeneous, heterogeneous, calcified and that with a high ratio of fat. Successful plaque classification will be a helpful tool for long-term clinical projects, e.g. investigation of plaque composition.