D 2018

The concept of an artificial neural network for the classification of atheromous plaques from digitized segmented histological images

BLAHUTA, Jiří, Petr ČERMÁK a Jakub SKÁCEL

Základní údaje

Originální název

The concept of an artificial neural network for the classification of atheromous plaques from digitized segmented histological images

Autoři

BLAHUTA, Jiří (203 Česká republika, garant), Petr ČERMÁK (203 Česká republika) a Jakub SKÁCEL (203 Česká republika, domácí)

Vydání

New York, ICENCO 2018 - 14th International Computer Engineering Conference: Secure Smart Societies, od s. 22-25, 4 s. 2018

Nakladatel

IEEE

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

20200 2.2 Electrical engineering, Electronic engineering, Information engineering

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Forma vydání

elektronická verze "online"

Odkazy

Kód RIV

RIV/47813059:19240/18:A0000316

Organizační jednotka

Filozoficko-přírodovědecká fakulta v Opavě

ISBN

978-1-5386-5117-9

ISSN

Klíčová slova anglicky

ANN; Atheromatous plaque; Histological patterns; Image segmentation; Neural Networks

Štítky

Změněno: 26. 3. 2019 09:31, Mgr. Kamil Matula, Ph.D.

Anotace

V originále

This paper is dedicted to the concept of an artificial neural network (ANN) for the classification of atheromatous plaque based on digitized histological patterns of areas segmented by means of the Region Growing algorithm. For this purpose, a multi-layered feedforward ANN with supervised learning has been used to successfully classify the segmented areas accordingly. The first phase is focused to find an optimal method for image segmentation. The Region Growing algorithm allows us to separate continuously segmented regions. For each region, appropriate features are selected, which are put into the neural network. The goal of the ANN is to classify plaque patterns into four classes according to their features. The classes represent the following types of plaque: homogeneous, heterogeneous, calcified and that with a high ratio of fat. Successful plaque classification will be a helpful tool for long-term clinical projects, e.g. investigation of plaque composition.