J 2019

Radial balanced metrics on the unit ball of the Kepler manifold

ENGLIŠ, Miroslav, Hélène BOMMIER-HATO and El-Hassan YOUSSFI

Basic information

Original name

Radial balanced metrics on the unit ball of the Kepler manifold

Authors

ENGLIŠ, Miroslav (203 Czech Republic, belonging to the institution), Hélène BOMMIER-HATO (250 France) and El-Hassan YOUSSFI (250 France)

Edition

Journal of Mathematical Analysis and Applications, San Diego (USA), Academic Press Inc. Elsevier Science, 2019, 0022-247X

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Journal of Mathematical Analysis and Applications

RIV identification code

RIV/47813059:19610/19:A0000043

Organization unit

Mathematical Institute in Opava

DOI

http://dx.doi.org/10.1016/j.jmaa.2019.02.067

UT WoS

000464490800038

Keywords in English

Balanced metric; Bergman kernel; Kepler manifold

Tags

Tags

International impact, Reviewed

Links

GA16-25995S, research and development project.
Změněno: 20/4/2020 16:01, Mgr. Aleš Ryšavý

Abstract

V originále

We show that there is no radial balanced metric on the unit ball of the Kepler manifold with not too wild boundary behavior. Additionally, we identify explicitly the weights corresponding to radial metrics with such boundary behavior which satisfy the balanced condition as far as germs at the boundary are concerned. Related results for Poincaré metrics are also established.
Displayed: 26/12/2024 12:16