Detailed Information on Publication Record
2019
Li-Yorke sensitivity does not imply Li-Yorke chaos
HANTÁKOVÁ, JanaBasic information
Original name
Li-Yorke sensitivity does not imply Li-Yorke chaos
Authors
HANTÁKOVÁ, Jana (203 Czech Republic, guarantor, belonging to the institution)
Edition
Ergodic Theory and Dynamical Systems, New York, Cambridge University Press, 2019, 0143-3857
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
United States of America
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
RIV identification code
RIV/47813059:19610/19:A0000053
Organization unit
Mathematical Institute in Opava
UT WoS
000488517300008
Keywords in English
Li-Yorke sensitivity; Li-Yorke chaos; scrambled set
Tags
Tags
International impact, Reviewed
Změněno: 20/4/2020 15:59, Mgr. Aleš Ryšavý
Abstract
V originále
We construct an infinite-dimensional compact metric space X, which is a closed subset of S x H, where S is the unit circle and H is the Hilbert cube, and a skew-product map F acting on X such that (X, F) is Li-Yorke sensitive but possesses at most countable scrambled sets. This disproves the conjecture of Akin and Kolyada that Li-Yorke sensitivity implies Li-Yorke chaos [Akin and Kolyada. Li-Yorke sensitivity. Nonlinearity 16, (2003), 1421-1433].