J 2019

Li-Yorke sensitivity does not imply Li-Yorke chaos

HANTÁKOVÁ, Jana

Basic information

Original name

Li-Yorke sensitivity does not imply Li-Yorke chaos

Authors

HANTÁKOVÁ, Jana (203 Czech Republic, guarantor, belonging to the institution)

Edition

Ergodic Theory and Dynamical Systems, New York, Cambridge University Press, 2019, 0143-3857

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Ergodic Theory and Dynamical Systems

RIV identification code

RIV/47813059:19610/19:A0000053

Organization unit

Mathematical Institute in Opava

DOI

http://dx.doi.org/10.1017/etds.2018.10

UT WoS

000488517300008

Keywords in English

Li-Yorke sensitivity; Li-Yorke chaos; scrambled set

Tags

Tags

International impact, Reviewed
Změněno: 20/4/2020 15:59, Mgr. Aleš Ryšavý

Abstract

V originále

We construct an infinite-dimensional compact metric space X, which is a closed subset of S x H, where S is the unit circle and H is the Hilbert cube, and a skew-product map F acting on X such that (X, F) is Li-Yorke sensitive but possesses at most countable scrambled sets. This disproves the conjecture of Akin and Kolyada that Li-Yorke sensitivity implies Li-Yorke chaos [Akin and Kolyada. Li-Yorke sensitivity. Nonlinearity 16, (2003), 1421-1433].
Displayed: 24/12/2024 04:00