J 2019

Nonlocal symmetries, conservation laws, and recursion operators of the Veronese web equation

VOJČÁK, Petr, Oleg I. MOROZOV and Iosif S. KRASIL'SHCHIK

Basic information

Original name

Nonlocal symmetries, conservation laws, and recursion operators of the Veronese web equation

Authors

VOJČÁK, Petr (203 Czech Republic, belonging to the institution), Oleg I. MOROZOV (643 Russian Federation) and Iosif S. KRASIL'SHCHIK (643 Russian Federation)

Edition

Journal of Geometry and Physics, Amsterdam, Elsevier B.V. 2019, 0393-0440

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Netherlands

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Journal of Geometry and Physics

RIV identification code

RIV/47813059:19610/19:A0000054

Organization unit

Mathematical Institute in Opava

DOI

http://dx.doi.org/10.1016/j.geomphys.2019.103519

UT WoS

000496342600020

Keywords in English

Veronese web equation; Differential coverings; Lax pairs; Nonlocal symmetries; Recursion operators; Master symmetries

Tags

Tags

International impact, Reviewed

Links

EF16_027/0008521, research and development project.
Změněno: 20/4/2020 16:00, Mgr. Aleš Ryšavý

Abstract

V originále

We study the Veronese web equation u(y)u(tx) + lambda u(x)u(ty) - (lambda + 1)u(t)u(xy) = 0 and using its isospectral Lax pair construct two infinite series of nonlocal conservation laws. In the infinite differential coverings associated to these series, we describe the Lie algebras of the corresponding nonlocal symmetries. Finally, we construct a recursion operator and explore its action on nonlocal shadows. The operator provides a new shadow which serves as a master-symmetry.
Displayed: 25/11/2024 15:17