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Abstract 

We propose two applications of a special linearly ordered commutative ring with zero divisors in 

business decision making.  First, we consider an enterprise facing several future scenarios (events) with 

the likelihood (expectation or probability) and the worst impact score of each event being given.  We 

propose that the likelihoods and scores attain values in the special linearly ordered ring.  The undesired 

impact of an event can be mitigated if the enterprise makes an investment into preventive measures.  The 

goal is to find an optimal allocation of a limited budget so as to minimize the overall expected impact 

score.  Second, we briefly note that it also makes sense to use the special linearly ordered ring with zero 

divisors in the FMEA (Failure Mode and Effects Analysis) method, and, in line with the first application, 

we propose an extension the method.  We illustrate the applications by simple examples. 
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1. Introduction 

 
Consider a manager (decision maker) who evaluates some threats to an enterprise or risks in the 

production process; alternatively, the manager can evaluate new opportunities for the enterprise, etc. 
Each threat or opportunity is understood as an undesirable or desirable, respectively, event.  We 

assume for simplicity that the number of the events under consideration is finite.  Furthermore, an impact 
score of each event is given.  The impact score can be either a number from a certain scale (such as from 
0 to 100, say), or the score can mean the estimated costs of the damage caused by the event.  
Alternatively, the score can mean the estimated profit brought by an opportunity if it happens.  Let us, 
however, introduce the convention that the event is a risk and the score of its undesirable impact is 
positive.  The score of desirable impacts of opportunities will be negative then. 

Thus, let  � = ���, ��, … , �	
  be the set of the future scenarios or events under consideration.  
Moreover, for each  � ∈ �,  let  �  be the likelihood (or expectation or probability) that the event   
�  occurs and let  �  be the score of the worst impact of the event  �.  We assume that the  
likelihoods  �  and the scores  �  are positive and non-zero, respectively, for  � ∈ �.  (If the outcome 
of the event  �  is desirable or undesirable, then  � < 0  or  � > 0,  respectively.  Events that are 
impossible (� = 0) or have no impact (� = 0) need not be considered.) 

One of the decision making methods suggests that the manager divides the events into four 
categories:  events of (a) high likelihood and significant impact, (b) low likelihood but significant 
impact, (c) high likelihood but negligible impact, (d) low likelihood and negligible impact.  
Schematically, the events can be grouped into the four parts of a square as follows: 
 

(a) (c) 

(b) (d) 
 

Then, the manager should tackle the events in the upper left corner, i.e. of category (a), first; then, once 
this is done, the manager should deal with the events on the diagonal, i.e. of categories (b) and (c).  And 
the manager should not deal with the events in the lower right corner, i.e. of category (d), at all.  Although 
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the last rule may seem questionable, notice the events of category (a), (b) and (c) should be treated first.  
If there are no such events, then the events of category (d) can be “refined”, i.e. split into new categories 
(a), (b), (c), (d), and the analysis can be repeated. 

The purpose of this paper is to note that the effect of the above described decision making 
method, i.e., neglecting the events of category (d), can be achieved by a suitable application of a special 
linearly ordered commutative ring.  We also notice that it makes sense to use the special linearly ring in 
the FMEA (Failure Mode and Effects Analysis) method. 
 
2. A special linearly ordered commutative ring 

 
The ring is an algebraic structure where the algebraic operations of addition, subtraction, and 

multiplication are defined; the addition is commutative and associative, and the multiplication is 
distributive with respect to the addition.  If the multiplication is also commutative and the ring is 
endowed with a relation of linear ordering compatible with the operations, we say the ring is 
commutative and linearly ordered.  In this paper, we shall not go into details, but we refer the interested 
reader to a textbook on algebra, such as Procházka (1990).  We have established a discrete variant of 
Farkas’ Lemma in the setting of a linearly ordered commutative ring (Bartl and Dubey, 2017, Bartl, 
2017, Bartl, submitted).  It turns out that one of the examples of the linearly ordered commutative rings 
given in Bartl (2017) finds applications in business decision making.  We reproduce the example (Bartl, 
2017, Example 1, Bartl, submitted, Example 7.2) of the linearly ordered commutative ring as follows. 

Consider the set of the real numbers  ℝ.  Introduce a new positive infinitesimal element  �.  That 
is, the element  �  is positive (� > 0), but it is not among the standard real numbers (� ∉ ℝ), yet it is 
smaller than any positive real number (0 < � < �  for all positive  � ∈ ℝ). 

Now, the special linearly ordered commutative ring  �  shall consist of all sums of the form   
� + ��  with  �, � ∈ ℝ.  Formally, we have  � = �  � + �� ∶ �, � ∈ ℝ  
.  The addition and subtraction are 
defined in the usual way.  That is, we have  �� + ��� + �� + ��� = �� + �� + �� + ���  and  
�� + ��� − �� + ��� = �� − �� + �� − ���.  Using the rule that  ��  = �� = 0  (annihilates), the 
multiplication is also defined in the usual way, so that we have  �� + ����� + ��� = 
= ���� + ��� + ���� + ������ = ���� + ��� + ����.  For example, we have  1 + 2� + 3 + 4� = 
= 4 + 6�  and  �5 + 6���7 + 8�� = 35 + 82�. 

Finally, we endow the ring with a linear ordering.  We order the elements of the ring by using 
the above rule that the element  �  is infinitely less than any positive real number.  That is, we have  
�� + ��� ≤ �� + ���  if and only if either  � < �,  or  � = �  and  � ≤ �.  For example, the next relations 
hold true:  −1 + 100� < 0 − 1000� < 1 + 0� < 2 − 1� < 2 + 1� < 3 − 2�. 
 
3. A mathematical model 

 
We notice that the rules of the decision making method, which was described in the Introduction, 

can be modelled mathematically by assigning the positive and non-zero elements of the ring  �  to the 
likelihoods  �  and the impact scores  �,  respectively, of the events  � ∈ �.  (Recall that  � > 0  or  
� < 0  iff the impact is undesirable or desirable, i.e., the event  �  is a risk or an opportunity, 
respectively.)  High likelihoods receive values of the form  � + ��  with  � > 0, while low likelihoods 
are evaluated by  � + ��  with  � = 0  and  � > 0.  Similarly, significant impacts receive values of the 
form  � + ��  with  � ≠ 0,  while negligible impacts are evaluated by  � + ��  with  � = 0  and  � ≠ 0. 

For an event  � ∈ �,  the product  �� = � + ��,  with  �, � ∈ ℝ,  is the event’s 
weighted impact score.  Now, observe that the event  �  is of high likelihood and significant impact, i.e. 
of category (a), iff  � ≠ 0,  it is of low likelihood but significant impact or high likelihood but negligible 
impact, i.e. of category (b) or (c), iff  � = 0  and  � ≠ 0,  and it is of low likelihood and negligible 
impact, i.e. of category (d), iff the result is zero.  The rules of the decision making method described in 
the Introduction have been modelled mathematically thus.  Moreover, the sum  ∑ ��∈,   can be 
understood as the overall vulnerability index of the enterprise. 

Now, assume that the likelihood  �  of the occurrence of the event  � ∈ �  is given, but its 
undesired impact can be mitigated (or can even be turned into a desirable one) if the enterprise makes 
an investment into preventive measures against the event.  In particular, if the amount  -  of money is 
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invested into the preventive measures against the event  �,  then the event’s impact score will decrease 
to  �. .  We assume that the amount  - ∈ ℝ  is a positive real number, but the new impact score  �. ∈ �  
is again a value in the special ring  �.  We also assume that  �. < �,  i.e., the undesired impact is 
decreased. 

The enterprise can choose the amount of money which it invests into the preventive measures 
against the event  � ∈ �.  Assuming  - > 0,  the invested amount  / ∈ ℝ  must be such that   
0 ≤ / ≤ -,  meaning that it makes no sense to invest more than  -  into the preventive measures.  
Then, we assume the resulting impact score is decreased proportionally, i.e., the resulting impact score 
is  0 = � − �� − �. �/ -⁄ . 

Finally, we assume that the total budget for the investments is limited by the amount  - ∈ ℝ,  
which is a positive real number.  Then, the goal of the enterprise is to invest  
into the preventive measures so that the overall vulnerability index  ∑ �0∈, = 
= ∑ �� − ��� − �. �/ -⁄∈,   is minimized and the available budget  -  is not exceeded.  
Removing the constant term and inverting the sign of the second term in the objective function, this 
problem can be formulated mathematically as follows: 
 

 maximize ∑ �
234235

63
/∈,  (1) 

 
 subject to ∑ /∈, ≤ - , 
 
     0 ≤ / ≤ -  for � ∈ � 
 
where  / ∈ ℝ  are variables for  � ∈ Ω.  Since the coefficients  ��� − �. � -⁄ = � + ��,  with  
�, � ∈ ℝ,  are fixed and the variables  /  are real numbers, the problem is a simple problem of 
lexicographic linear programming if the set  � = ���, … , �	
  is finite.  (More generally, we could 
assume that the set  � = ���, ��, �9, … 
  is countable.  We should assume then that the coefficients   
�  and  �  are bounded so that the sum  ∑ �� + ���/∈,   converges.) 

Thus if the set  �  of the events is finite, the above lexicographic linear programming problem 
can be solved easily, which can help the enterprise to allocate the budget optimally so that the overall 
vulnerability index of the enterprise is minimized. 
 
4. An example 

 
An enterprise estimates that one of the four risks or scenarios  A, B, C, D  will arise in near future.  

Thus, we consider the set  � = �A, B, C, D
.  Based on the analysis, the enterprise estimates the 
likelihoods of the scenarios as follows:  �> = 0.6 − 300�,  �@ = 0 + 800�,  �A = 0.4 − 700�,   
�B = 0 + 200�.  Recall that  �  is a positive infinitesimal element less than any positive real number 
(0 < � < �  for all positive  � ∈ ℝ),  and it annihilates when multiplied by itself (�� = 0); see  
Section 2 for the details.  It holds  ∑ �∈, = 1  in this particular example, i.e., the positive likelihoods  
�  can be understood as (generalized) probabilities.  Moreover, the enterprise estimates the (undesired) 
impact scores of the scenarios as follows:  �> = 10 + 0�,  �@ = 60 + 80�,  �A = 0 + 60�,   
�B = 0 + 90�. 

The enterprise analysed each scenario further, and concluded that the impact of each of the 
scenarios can be mitigated if preventive measures are adopted.  It is possible to decrease the impact 
scores to the levels as follows:  �>

. = 0 + 80�,  �@
. = −3 − 60�,  �A

. = −20 + 0�,  �B
. = −1 + 0�.  The 

costs of the respective preventive measures, however, will be:  -> = 600,  -@ = 700,  -A = 800,   
-B = 100.  If a partial investment into the preventive measures against a scenario  � ∈ �  is made, then 
the (undesired) impact is mitigated proportionally.  Notice that scenario  A  possesses a minor risk since 
it cannot be mitigated completely (�>

. > 0,  but  0 < �>
. < �  for all positive  � ∈ ℝ), while scenarios  

B, C, D  stand for opportunities actually because their impacts can be made negative  
(�@

. < −3,  �A
. = −20,  �B

. = −1), i.e. desirable, if some investment is made. 
The total budget which the enterprise can invest into the preventive measures is  - = 1000.  

Denote by  />, /@, /A, /B  the amounts of money invested into the preventive measures against the 
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scenarios  A, B, C, D,  respectively.  For a scenario  � ∈ �,  if  / = -,  then the impact score is mitigated 
to  0 = �. ,  and it is mitigated to  0 = � − �� − �. �/ -⁄   if  0 ≤ / ≤ -.  The goal is to 
minimize the enterprise’s overall vulnerability index  ∑ �0∈,   so that the available budget  -  is not 
exceeded, i.e., subject to  ∑ /∈, ≤ -  and  0 ≤ / ≤ -  for all  � ∈ �. 

It is easy to see that, instead of minimizing the sum  ∑ �0∈, ,  we can equivalently maximize 
the sum  ∑ ��� − �. �/ -⁄∈, .  Denoting  ��� − �. � -⁄ = � + ��  for  � ∈ �,  a few simple 
calculations (see Section 2 for the rules) yield 
 

 �> + �>� = �
�DD − EDF

�DD � , �A + �A� = �
�DD − �GHG

�DD � , 
 
 �@ + �@� = 0 + 72� , �B + �B� = 0 + 2� . 
 

Put together, we obtain the next linear programming problem: 
 

 maximize I �
�DD /> + 0/@ + �

�DD /A + 0/BJ + I− EDF
�DD /> + 72/@ − �GHG

�DD /A + 2/BJ � (2) 

 
 subject to /> + /@ + /A + /B ≤ 1000 , 

0 ≤ /> ≤ 600 , 
0 ≤ /@ ≤ 700 , 
0 ≤ /A ≤ 800 , 
0 ≤ /B ≤ 100 . 

 
We solve this linear programming problem in two steps. 

In the first step, we maximize 
 

 
�

�DD /> + 0/@ + �
�DD /A + 0/B 

 
subject to the above constraints.  It is easy to see that the optimal value is equal  10  and that a solution  
K/>, /@, /A, /BL  is optimal if and only if  /> + /A = 1000,  0 ≤ /> ≤ 600,  0 ≤ /A ≤ 800,  and   
/@ = /B = 0. 

In the second step, we add the above constraints that describe the optimal solutions of the first 
step (/> + /A = 1000,  0 ≤ /> ≤ 600,  0 ≤ /A ≤ 800,  /@ = /B = 0) to the constraints of the original 
problem, and maximize 
 

 − EDF
�DD /> + 72/@ − �GHG

�DD /A + 2/B 

 
subject to the larger collection of the constraints.  It is easy to see that the optimal solution is  /> = 600,  
/A = 400,  and  /@ = /B = 0,  and the optimal value is  −10036. 

Put together, the enterprise minimizes the (undesired) impacts if it invests the amounts   
/> = 600,  /@ = 0,  /A = 400,  /B = 0  into the preventive measures against the scenarios  A, B, C, D,  
respectively, yielding the overall vulnerability index of the enterprise  ∑ �0∈, = 
= �6 + 45024�� − �10 − 10036�� = −4 + 55060�,  i.e., the enterprise may expect a desired impact 
of new opportunities. 
 
5. A note on the FMEA method 

 
The FMEA (Failure Mode and Effects Analysis) method (Stamatis, 2003) is a tool to identify 

serious risks; it can also be used in Six Sigma.  An event  �  under consideration receives three scores:  
probability  �  is the likelihood of the occurrence of the event, severity  �  is the score of the worst 
impact of the event, and detection  M  is the likelihood that the event will not be detected until its severe 
impact shows up.  It is usual to take the scores from the scale  �1, 2, … , 10
,  where 1 and 10 represent 
the mildest and the most serious, respectively, value.  The RPN (Risk Priority Number) of the event  �  
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is a number ranging from 1 (risk of little account) to 1000 (serious hazard); it is the product of the three 
scores, i.e. ��N = ��M. 

In the FMEA method, it also makes sense to use the ring  �  presented in Section 2.  We then 
choose the scores  �, �, M  from the scale  O = � � + �� ∶ �, � ∈ ℝ are such that 0 ≤ � ≤ 10, and 
� > 0 if � = 0, and � ≤ 0 if � = 10 
,  say.  If any of the three quantities is considered negligible, it 
receives a score of the form  � + ��  with  � = 0  and  � > 0;  it receives a score with  � > 0  otherwise.  
If exactly one of the three quantities is negligible, then the resulting RPN of the event is also negligible.  
If at least two of the three quantities are negligible, then the RPN of the event is zero.  If none of the 
three scores is negligible, then the RPN of the event is of the form  � + ��  with  � > 0,  i.e., the event 
receives due attention. 
 
6. An extension of the FMEA method and an example 

 
Considering the mathematical model presented in Section 3, it is straightforward to extend the 

FMEA method in a similar way. 
Let  �  be a (finite) set of events that the enterprise is considering.  For each event  � ∈ �,  let 

its probability  � ∈ O,  severity  � ∈ O,  and detection  M ∈ O  scores be given, where  O  is the scale 
introduced in Section 5. 

Assume that the three scores of an event  � ∈ �  can be decreased to  �. ∈ O,  �. ∈ O,  M. ∈ O  
if the enterprise invests the (positive) amounts  -P ∈ ℝ,  -2 ∈ ℝ,  -Q ∈ ℝ  into the respective preventive 
measures.  If a smaller amount is invested, then the respective score is decreased proportionally. 

Thus, if  /P , /2 , /Q ∈ ℝ  such that  0 ≤ /P ≤ -P ,  0 ≤ /2 ≤ -2 ,  and  0 ≤ /Q ≤ -Q  are the 
amounts invested into the preventive measures to decrease the probability, severity, and detection scores, 
respectively, then the RPN of the event  � ∈ �  will be 
 

 ��N = I� − P34P35

63R
/P J I� − 234235

63S
/2 J IM − Q34Q35

63T
/QJ . 

 
Now, the goal is to find an optimal allocation of the investments into the preventive measures so that the 
maximum RPN (max∈, ��N) is minimized and a given positive budget  - ∈ ℝ  is not exceeded.  The 
problem can then be formulated mathematically as follows: 
 
 minimize X (3) 
 
 subject to ��N ≤ X  for � ∈ � , 
 
  ∑ /P + /2 + /Q∈, ≤ - , 
 
  0 ≤ /P ≤ -P  for � ∈ � , 
  0 ≤ /2 ≤ -2   for � ∈ � , 
  0 ≤ /Q ≤ -Q  for � ∈ � , 
 
which is a problem with non-linear constraints.  We propose an efficient solution method at the end of 
this section below. 

As an illustration, consider only one event for simplicity, i.e., we consider  � = �A
.  The 
probability score  �> = 5 + 100�  can be decreased to  �>

. = 1 − 100�  if the amount  ->
P = 300  is 

invested.  The severity score  �> = 6 + 200�  can be decreased to  �>
. = 2 − 200�  if the amount   

->
2 = 400  is invested.  And the detection score  M> = 7 + 300�  can be decreased to  M>

. = 3 − 300�  
if the amount  ->

Q = 500  is invested.  The investments into the preventive measures are limited by the 
available budget  - = 500.  Then, a couple of simple calculations show that the 
 

 ��N> = I5 + 100� − HY�DDZ
9DD />

PJ I6 + 200� − HYHDDZ
HDD />

2 J I7 + 300� − HY[DDZ
EDD />

QJ 
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and the problem is to 
 
 minimize ��N> (4) 
 
 subject to />

P + />
2 + />

Q ≤ 500 , 
0 ≤ />

P ≤ 300 , 
0 ≤ />

2 ≤ 400 , 
0 ≤ />

Q ≤ 500 . 
 
Following Section 4, we solve the problem in two stages.  In the first stage, we solve the problem 
 

 minimize I5 − �
GE />

PJ I6 − �
�DD />

2 J I7 − �
��E />

QJ (5) 

 
 subject to />

P + />
2 + />

Q ≤ 500 , 
0 ≤ />

P ≤ 300 , 
0 ≤ />

2 ≤ 400 , 
0 ≤ />

Q ≤ 500 . 
 
To solve this problem, we approximate the objective function around the point  K/>

P , />
2 , />

QL = K0, 0, 0L  
linearly: 
 

 z ≈ 5 × 6 × 7 − 6 × 7 × �
GE />

P − 5 × 7 × �
�DD />

2 − 5 × 6 × �
��E />

Q = 

 

 = 210 − FHD
�EDD />

P − E�E
�EDD />

2 − 9[D
�EDD />

Q  . 
 
Next, we increase the variable with the largest (most negative) coefficient, i.e. the variable  />

P,  as much 
as possible, until either the limit  ->

P  is reached or the budget  -  is exhausted.  Thus, we fix its value at  
/>

P ≔ 300, and we approximate the objective function around the point  K/>
P , />

2 , />
QL = K300, 0, 0L,  with 

the variable  />
P  fixed, linearly: 

 

 ` ≈ I5 − �
GE × 300J × I6 × 7 − 7 × �

�DD />
2 − 6 × �

��E />
QJ = 42 − 9E

EDD />
2 − �H

EDD />
Q  . 

 
Next, we again increase the variable with the largest coefficient, i.e. the variable  />

2 ,  as much as possible, 
until either the limit  ->

2 = 400  is reached or the remaining budget  - − />
P = 200  is exhausted.  Thus, 

we fix its value at  />
2 ≔ 200.  Since the budget is exhausted now, we have solved the problem thus; the 

optimal solution is  K/>
P , />

2 , />
QL = K300, 200, 0L,  and there is no need for the second stage. 

The above simple example also suggests how we can solve the general problem (3) to minimize  
max∈, ��N  subject to  ∑ /P + /2 + /Q∈, ≤ -  and  0 ≤ /P ≤ -P ,  0 ≤ /2 ≤ -2 ,  0 ≤ /Q ≤ -Q  for 
all  � ∈ �  efficiently.  We solve the problem in two stages.  In the first stage, we consider the real parts 
(without the infinitesimal element �) of the  ��N  in the objective function.  Starting with zero 
investments, as above, we choose the event  � ∈ �  such that its  ��N  is maximal; if there are two or 
more events with the same maximal value, we consider all such events, or rather, we consider a group 
of those events.  Next, we approximate the real parts of the  ��N  of the events linearly, as above.  
Then, we increase the respective variables with the largest coefficients (one variable from each ��N) 
so that the equality of the (decreasing) maximal values of  ��N  in the group is preserved until either 
the upper limit of a variable is reached, or the budget is exhausted, or the common maximal value of the 
decreasing  ��N  decreases to a value of a  ��N5   which was originally less than the common 
maximal value; the event  �.  must be added to the group of the events whose common maximal value 
is decreased. 

The process stops when all three variables  /P , /2 , /Q   of an event  � ∈ �  are fixed at their 
upper bounds (since we consider  max∈, ��N,  the maximum will not decrease any more), or the 
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budget  -  is exhausted, or the coefficients of the real parts by the non-fixed variables  /  are zero, in 
which case we proceed with the second stage. 

In the second stage, we consider the infinitesimal parts (with the element �) of the  ��N.  We 
then continue analogously as in the first stage. 

Notice that we could apply this two-stage procedure to solve problem (1) or example (2) given 
in Section 3 or 4, respectively, too. 
 
7. Conclusion 

 
We have proposed two applications of a special linearly ordered commutative ring with zero 

divisors (Section 2) in business decision making.  The first application consists in an optimal allocation 
of a limited budget in order to minimize the overall vulnerability index of an enterprise (Section 3); we 
have illustrated the application by a simple example (Section 4).  The second application is within the 
FMEA (Failure Mode and Effects Analysis) method (Section 5).  As an extension of the FMEA method, 
we have considered the problem of an optimal allocation of a limited budget in order to minimize the 
maximum RPN (Risk Priority Number) of the events; moreover, we have also proposed an efficient 
procedure to solve the respective mathematical models (Section 6). 
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