2019
Epicyclic Oscillations in the Hartle-Thorne External Geometry
URBANCOVÁ, Gabriela, Martin URBANEC, Gabriel TÖRÖK, Zdeněk STUCHLÍK, Martin BLASCHKE et. al.Základní údaje
Originální název
Epicyclic Oscillations in the Hartle-Thorne External Geometry
Autoři
URBANCOVÁ, Gabriela (203 Česká republika, domácí), Martin URBANEC (203 Česká republika, garant, domácí), Gabriel TÖRÖK (203 Česká republika, domácí), Zdeněk STUCHLÍK (203 Česká republika, domácí), Martin BLASCHKE (203 Česká republika, domácí) a John MILLER (826 Velká Británie a Severní Irsko)
Vydání
Astrophysical Journal, 2019, 0004-637X
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/47813059:19240/19:A0000427
Organizační jednotka
Filozoficko-přírodovědecká fakulta v Opavě
UT WoS
000469433800002
Klíčová slova anglicky
stars: oscillations; stars: neutron; stars: rotation; X-rays: binaries
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Návaznosti
GA17-16287S, projekt VaV. GB14-37086G, projekt VaV. LTC18058, projekt VaV.
Změněno: 21. 4. 2020 10:31, Ing. Petra Skoumalová
Anotace
V originále
The external Hartle-Thorne geometry, which describes the spacetime outside a slowly rotating compact star, is characterized by the gravitational mass M, angular momentum J, and quadrupole moment Q of the star and gives a convenient description, which, for the rotation frequencies of more than 95% of known pulsars, is sufficiently accurate for most purposes. We focus here on the motion of particles in these spacetimes, presenting a detailed systematic analysis of the frequency properties of radial and vertical epicyclic motion and of orbital motion. Our investigation is motivated by X-ray observations of binary systems containing a rotating neutron star that is accreting matter from its binary companion. In these systems, twin high-frequency quasi-periodic oscillations (QPOs) are sometimes observed with a frequency ratio approaching 3:2 or 5:4, and these may be explained by models involving the orbital and epicyclic frequencies of quasi-circular geodesic motion. In our analysis, we use realistic equations of state for the stellar matter and proceed in a self-consistent way, following the Hartle-Thorne approach in calculating both the corresponding values of Q, M, and J for the stellar model and the properties of the surrounding spacetime. Our results are then applied to a range of geodetical models for QPOs. A key feature of our study is that it implements the recently discovered universal relations among neutron-star parameters so that the results can be directly used for models with different masses M, radii R, and rotational frequencies f_(rot).