2019
Hamilton-Jacobi Wave Theory in Manifestly-Covariant Classical and Quantum Gravity
CREMASCHINI, Claudio a Massimo TESSAROTTOZákladní údaje
Originální název
Hamilton-Jacobi Wave Theory in Manifestly-Covariant Classical and Quantum Gravity
Autoři
CREMASCHINI, Claudio (380 Itálie, garant, domácí) a Massimo TESSAROTTO (380 Itálie, domácí)
Vydání
Symmetry, 2019, 2073-8994
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/47813059:19240/19:A0000554
Organizační jednotka
Filozoficko-přírodovědecká fakulta v Opavě
UT WoS
000467314400151
Klíčová slova anglicky
covariant quantum gravity; Hamilton equations; Hamilton-Jacobi theory; wave theory; massive; massless gravitons
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 22. 3. 2020 07:11, RNDr. Jan Hladík, Ph.D.
Anotace
V originále
The axiomatic geometric structure which lays at the basis of Covariant Classical and Quantum Gravity Theory is investigated. This refers specifically to fundamental aspects of the manifestly-covariant Hamiltonian representation of General Relativity which has recently been developed in the framework of a synchronous deDonder-Weyl variational formulation (2015-2019). In such a setting, the canonical variables defining the canonical state acquire different tensorial orders, with the momentum conjugate to the field variable g_(mu nu) being realized by the third-order 4-tensor Pi_(mu nu)^alpha. It is shown that this generates a corresponding Hamilton-Jacobi theory in which the Hamilton principal function is a 4-tensor S^alpha . However, in order to express the Hamilton equations as evolution equations and apply standard quantization methods, the canonical variables must have the same tensorial dimension. This can be achieved by projection of the canonical momentum field along prescribed tensorial directions associated with geodesic trajectories defined with respect to the background space-time for either classical test particles or raylights. It is proved that this permits to recover a Hamilton principal function in the appropriate form of 4-scalar type. The corresponding Hamilton-Jacobi wave theory is studied and implications for the manifestly-covariant quantum gravity theory are discussed. This concerns in particular the possibility of achieving at quantum level physical solutions describing massive or massless quanta of the gravitational field.