J 2019

Hamilton-Jacobi Wave Theory in Manifestly-Covariant Classical and Quantum Gravity

CREMASCHINI, Claudio and Massimo TESSAROTTO

Basic information

Original name

Hamilton-Jacobi Wave Theory in Manifestly-Covariant Classical and Quantum Gravity

Authors

CREMASCHINI, Claudio (380 Italy, guarantor, belonging to the institution) and Massimo TESSAROTTO (380 Italy, belonging to the institution)

Edition

Symmetry, 2019, 2073-8994

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10308 Astronomy

Country of publisher

Switzerland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

RIV identification code

RIV/47813059:19240/19:A0000554

Organization unit

Faculty of Philosophy and Science in Opava

UT WoS

000467314400151

Keywords in English

covariant quantum gravity; Hamilton equations; Hamilton-Jacobi theory; wave theory; massive; massless gravitons

Tags

Tags

International impact, Reviewed
Změněno: 22/3/2020 07:11, RNDr. Jan Hladík, Ph.D.

Abstract

V originále

The axiomatic geometric structure which lays at the basis of Covariant Classical and Quantum Gravity Theory is investigated. This refers specifically to fundamental aspects of the manifestly-covariant Hamiltonian representation of General Relativity which has recently been developed in the framework of a synchronous deDonder-Weyl variational formulation (2015-2019). In such a setting, the canonical variables defining the canonical state acquire different tensorial orders, with the momentum conjugate to the field variable g_(mu nu) being realized by the third-order 4-tensor Pi_(mu nu)^alpha. It is shown that this generates a corresponding Hamilton-Jacobi theory in which the Hamilton principal function is a 4-tensor S^alpha . However, in order to express the Hamilton equations as evolution equations and apply standard quantization methods, the canonical variables must have the same tensorial dimension. This can be achieved by projection of the canonical momentum field along prescribed tensorial directions associated with geodesic trajectories defined with respect to the background space-time for either classical test particles or raylights. It is proved that this permits to recover a Hamilton principal function in the appropriate form of 4-scalar type. The corresponding Hamilton-Jacobi wave theory is studied and implications for the manifestly-covariant quantum gravity theory are discussed. This concerns in particular the possibility of achieving at quantum level physical solutions describing massive or massless quanta of the gravitational field.