J 2019

Three-dimensional general relativistic Poynting-Robertson effect. II. Radiation field from a rigidly rotating spherical source

BAKALA, Pavel, Vittorio DE FALCO, Emmanuele BATTISTA, Kateřina GOLUCHOVÁ, Debora LANČOVÁ et. al.

Základní údaje

Originální název

Three-dimensional general relativistic Poynting-Robertson effect. II. Radiation field from a rigidly rotating spherical source

Autoři

BAKALA, Pavel (203 Česká republika, domácí), Vittorio DE FALCO (380 Itálie, domácí), Emmanuele BATTISTA (380 Itálie, domácí), Kateřina GOLUCHOVÁ (203 Česká republika, garant, domácí), Debora LANČOVÁ (203 Česká republika, domácí), Maurizio FALANGA (756 Švýcarsko) a Luigi STELLA (380 Itálie)

Vydání

Physical Review D, 2019, 2470-0010

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Kód RIV

RIV/47813059:19240/19:A0000440

Organizační jednotka

Filozoficko-přírodovědecká fakulta v Opavě

UT WoS

000498879200010

Klíčová slova anglicky

Poynting-Robertson effect;rotating spherical source;trajectories of test particles;compact objects

Příznaky

Mezinárodní význam, Recenzováno

Návaznosti

GA17-16287S, projekt VaV.
Změněno: 27. 4. 2021 09:40, Jan Vlha

Anotace

V originále

We investigate the three-dimensional, general relativistic Poynting-Robertson (PR) effect in the case of rigidly rotating spherical source which emits radiation radially in the local comoving frame. Such radiation field is meant to approximate the field produced by the surface of a rotating neutron star, or by the central radiating hot corona of accreting black holes; it extends the purely radial radiation field that we considered in a previous study. Its angular momentum is expressed in terms of the rotation frequency and radius of the emitting source. For the background we adopt a Kerr spacetime geometry. We derive the equations of motion for test particles influenced by such radiation field, recovering the classical and weak-field approximation for slow rotation. We concentrate on solutions consisting of particles orbiting along circular orbits off and parallel to the equatorial plane, which are stabilized by the balance between gravitational attraction, radiation force and PR drag. Such solutions are found to lie on a critical hypersurface, whose shape may morph from prolate to oblate depending on the Kerr spin parameter and the luminosity, rotation and radius of the radiating sphere. For selected parameter ranges, the critical hypersurface intersects the radiating sphere giving rise to a bulging equatorial region or, alternatively, two lobes above the poles. We calculate the trajectories of test particles in the close vicinity of the critical hypersurface for a selected set of initial parameters and analyze the spatial and angular velocity of test particles captured on the critical hypersurface.