2019
Three-dimensional general relativistic Poynting-Robertson effect. II. Radiation field from a rigidly rotating spherical source
BAKALA, Pavel, Vittorio DE FALCO, Emmanuele BATTISTA, Kateřina GOLUCHOVÁ, Debora LANČOVÁ et. al.Základní údaje
Originální název
Three-dimensional general relativistic Poynting-Robertson effect. II. Radiation field from a rigidly rotating spherical source
Autoři
BAKALA, Pavel (203 Česká republika, domácí), Vittorio DE FALCO (380 Itálie, domácí), Emmanuele BATTISTA (380 Itálie, domácí), Kateřina GOLUCHOVÁ (203 Česká republika, garant, domácí), Debora LANČOVÁ (203 Česká republika, domácí), Maurizio FALANGA (756 Švýcarsko) a Luigi STELLA (380 Itálie)
Vydání
Physical Review D, 2019, 2470-0010
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/47813059:19240/19:A0000440
Organizační jednotka
Filozoficko-přírodovědecká fakulta v Opavě
UT WoS
000498879200010
Klíčová slova anglicky
Poynting-Robertson effect;rotating spherical source;trajectories of test particles;compact objects
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Návaznosti
GA17-16287S, projekt VaV.
Změněno: 27. 4. 2021 09:40, Jan Vlha
Anotace
V originále
We investigate the three-dimensional, general relativistic Poynting-Robertson (PR) effect in the case of rigidly rotating spherical source which emits radiation radially in the local comoving frame. Such radiation field is meant to approximate the field produced by the surface of a rotating neutron star, or by the central radiating hot corona of accreting black holes; it extends the purely radial radiation field that we considered in a previous study. Its angular momentum is expressed in terms of the rotation frequency and radius of the emitting source. For the background we adopt a Kerr spacetime geometry. We derive the equations of motion for test particles influenced by such radiation field, recovering the classical and weak-field approximation for slow rotation. We concentrate on solutions consisting of particles orbiting along circular orbits off and parallel to the equatorial plane, which are stabilized by the balance between gravitational attraction, radiation force and PR drag. Such solutions are found to lie on a critical hypersurface, whose shape may morph from prolate to oblate depending on the Kerr spin parameter and the luminosity, rotation and radius of the radiating sphere. For selected parameter ranges, the critical hypersurface intersects the radiating sphere giving rise to a bulging equatorial region or, alternatively, two lobes above the poles. We calculate the trajectories of test particles in the close vicinity of the critical hypersurface for a selected set of initial parameters and analyze the spatial and angular velocity of test particles captured on the critical hypersurface.