2019
Three-dimensional general relativistic Poynting-Robertson effect: Radial radiation field
DE FALCO, Vittorio, Pavel BAKALA, Emmanuele BATTISTA, Debora LANČOVÁ, Maurizio FALANGA et. al.Základní údaje
Originální název
Three-dimensional general relativistic Poynting-Robertson effect: Radial radiation field
Autoři
DE FALCO, Vittorio (380 Itálie, domácí), Pavel BAKALA (203 Česká republika, domácí), Emmanuele BATTISTA (380 Itálie), Debora LANČOVÁ (203 Česká republika, garant, domácí), Maurizio FALANGA (756 Švýcarsko) a Luigi STELLA (380 Itálie)
Vydání
Physical Review D, 2019, 2470-0010
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/47813059:19240/19:A0000441
Organizační jednotka
Filozoficko-přírodovědecká fakulta v Opavě
UT WoS
000456800000004
Klíčová slova anglicky
Poynting-Robertson effect; radial radiation field; Kerr spacetime; motion of test particles
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Návaznosti
GA17-16287S, projekt VaV.
Změněno: 21. 4. 2020 10:34, Ing. Petra Skoumalová
Anotace
V originále
In this paper, we investigate the three-dimensional (3D) motion of a test particle in a stationary, axially symmetric spacetime around a central compact object, under the influence of a radiation field. To this aim, we extend the two-dimensional version of the Poynting-Robertson effect in general relativity that was developed in previous studies. The radiation flux is modeled by photons which travel along null geodesics in the 3D space of a Kerr background and are purely radial with respect to the zero angular momentum observer (ZAMO) frames. The 3D general relativistic equations of motion that we derive are consistent with the classical (i. e., non-general relativity) description of the Poynting-Robertson effect in three dimensions. The resulting dynamical system admits a critical hypersurface, on which radiation force balances gravity. Selected test particle orbits are calculated and displayed, and their properties are described. It is found that test particles approaching the critical hypersurface at a finite latitude and with nonzero angular moment are subject to a latitudinal drift and asymptotically reach a circular orbit on the equator of the critical hypersurface, where they remain at rest with respect to the ZAMO. On the contrary, test particles that have lost all their angular momentum by the time they reach the critical hypersurface do not experience this latitudinal drift and stay at rest with respect to the ZAMO at fixed nonzero latitude.