2020
			
	    
	
	
    Extended symmetry analysis of an isothermal no-slip drift flux model
SERGYEYEV, Artur; Stanislav OPANASENKO; Alexander BIHLO a Roman POPOVYCHZákladní údaje
Originální název
Extended symmetry analysis of an isothermal no-slip drift flux model
	Autoři
SERGYEYEV, Artur (804 Ukrajina, domácí); Stanislav OPANASENKO (804 Ukrajina, garant); Alexander BIHLO (40 Rakousko) a Roman POPOVYCH (804 Ukrajina, domácí)
			Vydání
 Physica D: Nonlinear Phenomena, Amsterdam, Elsevier B.V. 2020, 0167-2789
			Další údaje
Jazyk
angličtina
		Typ výsledku
Článek v odborném periodiku
		Obor
10101 Pure mathematics
		Stát vydavatele
Nizozemské království
		Utajení
není předmětem státního či obchodního tajemství
		Impakt faktor
Impact factor: 2.300
			Kód RIV
RIV/47813059:19610/20:A0000064
		Organizační jednotka
Matematický ústav v Opavě
			UT WoS
000512219900003
		EID Scopus
2-s2.0-85072998138
		Klíčová slova anglicky
Hydrodynamic-type system; Isothermal no-slip drift flux; Point symmetry; Exact solution; Generalized symmetry; Conservation law
		Štítky
Příznaky
Mezinárodní význam, Recenzováno
		Návaznosti
EF16_027/0008521, projekt VaV. GBP201/12/G028, projekt VaV. 
			
				
				Změněno: 6. 4. 2021 14:09, Mgr. Aleš Ryšavý
				
		Anotace
V originále
We perform extended group analysis for a system of differential equations modeling an isothermal no slip drift flux. The maximal Lie invariance algebra of this system is proved to be infinite-dimensional. We also find the complete point symmetry group of this system, including discrete symmetries, using the megaideal-based version of the algebraic method. Optimal lists of one- and two-dimensional subalgebras of the maximal Lie invariance algebra in question are constructed and employed for obtaining reductions of the system under study. Since this system contains a subsystem of two equations that involves only two of three dependent variables, we also perform group analysis of this subsystem. The latter can be linearized by a composition of a fiber-preserving point transformation with a two-dimensional hodograph transformation to the Klein-Gordon equation. We also employ both the linearization and the generalized hodograph method for constructing the general solution of the entire system under study. We find inter alia genuinely generalized symmetries for this system and present the connection between them and the Lie symmetries of the subsystem we mentioned earlier. Hydrodynamic conservation laws and their generalizations are also constructed.