J 2020

Extended symmetry analysis of an isothermal no-slip drift flux model

SERGYEYEV, Artur, Stanislav OPANASENKO, Alexander BIHLO a Roman POPOVYCH

Základní údaje

Originální název

Extended symmetry analysis of an isothermal no-slip drift flux model

Autoři

SERGYEYEV, Artur (804 Ukrajina, domácí), Stanislav OPANASENKO (804 Ukrajina, garant), Alexander BIHLO (40 Rakousko) a Roman POPOVYCH (804 Ukrajina, domácí)

Vydání

Physica D: Nonlinear Phenomena, Amsterdam, Elsevier B.V. 2020, 0167-2789

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10101 Pure mathematics

Stát vydavatele

Nizozemské království

Utajení

není předmětem státního či obchodního tajemství

Kód RIV

RIV/47813059:19610/20:A0000064

Organizační jednotka

Matematický ústav v Opavě

UT WoS

000512219900003

Klíčová slova anglicky

Hydrodynamic-type system; Isothermal no-slip drift flux; Point symmetry; Exact solution; Generalized symmetry; Conservation law

Štítky

Příznaky

Mezinárodní význam, Recenzováno

Návaznosti

EF16_027/0008521, projekt VaV. GBP201/12/G028, projekt VaV.
Změněno: 6. 4. 2021 14:09, Mgr. Aleš Ryšavý

Anotace

V originále

We perform extended group analysis for a system of differential equations modeling an isothermal no slip drift flux. The maximal Lie invariance algebra of this system is proved to be infinite-dimensional. We also find the complete point symmetry group of this system, including discrete symmetries, using the megaideal-based version of the algebraic method. Optimal lists of one- and two-dimensional subalgebras of the maximal Lie invariance algebra in question are constructed and employed for obtaining reductions of the system under study. Since this system contains a subsystem of two equations that involves only two of three dependent variables, we also perform group analysis of this subsystem. The latter can be linearized by a composition of a fiber-preserving point transformation with a two-dimensional hodograph transformation to the Klein-Gordon equation. We also employ both the linearization and the generalized hodograph method for constructing the general solution of the entire system under study. We find inter alia genuinely generalized symmetries for this system and present the connection between them and the Lie symmetries of the subsystem we mentioned earlier. Hydrodynamic conservation laws and their generalizations are also constructed.