J 2005

Aschenbach effect: Unexpected topology changes in the motion of particles and fluids orbiting rapidly rotating Kerr black holes

STUCHLÍK, Zdeněk, Petr SLANÝ, Gabriel TÖRÖK a Marek ABRAMOWICZ

Základní údaje

Originální název

Aschenbach effect: Unexpected topology changes in the motion of particles and fluids orbiting rapidly rotating Kerr black holes

Vydání

Physical Review D, COLLEGE PK, AMER PHYSICAL SOC, 2005, 1550-7998

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Utajení

není předmětem státního či obchodního tajemství

Organizační jednotka

Filozoficko-přírodovědecká fakulta v Opavě

UT WoS

000226702700075

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 12. 4. 2021 14:15, RNDr. Kateřina Klimovičová, Ph.D.

Anotace

V originále

Newtonian theory predicts that the velocity V of free test particles on circular orbits around a spherical gravity center is a decreasing function of the orbital radius r, dV/dr<0. Only very recently, Aschenbach [B. Aschenbach, Astronomy and Astrophysics, 425, 1075 (2004)] has shown that, unexpectedly, the same is not true for particles orbiting black holes: for Kerr black holes with the spin parameter a>0.9953, the velocity has a positive radial gradient for geodesic, stable, circular orbits in a small radial range close to the black-hole horizon. We show here that the Aschenbach effect occurs also for nongeodesic circular orbits with constant specific angular momentum l=l(0)=const. In Newtonian theory it is V=l(0)/R, with R being the cylindrical radius. The equivelocity surfaces coincide with the R=const surfaces which, of course, are just coaxial cylinders. It was previously known that in the black-hole case this simple topology changes because one of the "cylinders" self-crosses. The results indicate that the Aschenbach effect is connected to a second topology change that for the l=const tori occurs only for very highly spinning black holes, a>0.99979.