J 2005

Radial and vertical epicyclic frequencies of Keplerian motion in the field of Kerr naked singularities - Comparison with the black hole case and possible instability of naked-singularity accretion discs

TÖRÖK, Gabriel and Zdeněk STUCHLÍK

Basic information

Original name

Radial and vertical epicyclic frequencies of Keplerian motion in the field of Kerr naked singularities - Comparison with the black hole case and possible instability of naked-singularity accretion discs

Authors

TÖRÖK, Gabriel and Zdeněk STUCHLÍK

Edition

ASTRONOMY & ASTROPHYSICS, LES ULIS CEDEX A, EDP SCIENCES S A, 2005, 0004-6361

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Confidentiality degree

není předmětem státního či obchodního tajemství

Organization unit

Faculty of Philosophy and Science in Opava

DOI

http://dx.doi.org/10.1051/0004-6361:20052825

UT WoS

000230210100006

Keywords in English

black holes physics; X-rays : general

Tags

clanek, MSM4781305903, Torokcentrum

Tags

International impact, Reviewed
Změněno: 12/4/2021 14:13, RNDr. Kateřina Klimovičová, Ph.D.

Abstract

V originále

Relativistic Keplerian orbital frequency (v(K)) and related epicyclic frequencies (radial v(r), vertical v(theta)) play an important role in the physics of accretion discs orbiting Kerr black holes - quasiperiodic oscillations observed in microquasars can be explained by associated resonant or trapping effects. Because of growing theoretical evidence of the possible existence of naked singularities, we discuss the behaviour of the fundamenal orbital frequencies for Keplerian motion in the field of Kerr naked singularities, primarily in order to find phenomena that could observationally distinguish a hypothetical naked singularity from black holes. Some astrophysically important consequences are sketched, namely the existence of strong resonant frequency for all Kerr naked singularities, with radial and vertical epicyclic frequencies equal and given by the relation omega(sr) = a(-2) root a(2)-1 (a(2) + 1)-(1).
Displayed: 7/11/2024 15:59