J 2015

Equations of State in the Hartle-Thorne Model of Neutron Stars Selecting Acceptable Variants of the Resonant Switch Model of Twin HF QPOs in the Atoll Source 4U 1636-53

GOLUCHOVÁ, Kateřina, Andrea KOTRLOVÁ, Zdeněk STUCHLÍK, Gabriel TÖRÖK, Martin URBANEC et. al.

Základní údaje

Originální název

Equations of State in the Hartle-Thorne Model of Neutron Stars Selecting Acceptable Variants of the Resonant Switch Model of Twin HF QPOs in the Atoll Source 4U 1636-53

Vydání

Acta Astronomica, PL - Polská republika, 2015, 0001-5237

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Organizační jednotka

Filozoficko-přírodovědecká fakulta v Opavě

UT WoS

000359093300003

Klíčová slova anglicky

accretion; accretion disks; stars: neutron; X-rays: binaries

Příznaky

Mezinárodní význam, Recenzováno

Návaznosti

GB14-37086G, projekt VaV. GPP209/12/P740, projekt VaV.
Změněno: 27. 4. 2021 09:41, Jan Vlha

Anotace

V originále

The Resonant Switch (RS) model of twin high-frequency quasi-periodic oscillations (HF QPOs) observed in neutron star binary systems, based on switch of the twin oscillations at a resonant point, has been applied to the atoll source 4U 1636-53 under assumption that the neutron star exterior can be approximated by the Kerr geometry. Strong restrictions of the neutron star parameters M (mass) and a (spin) arise due to fitting the frequency pairs admitted by the RS model to the observed data in the regionsrelated to the resonant points. The most precise variants of the RS model are those combining the relativistic precession frequency relations with their modifications. Here, the neutron star mass and spin estimates given by the RS model are confronted with a variety of equations of state (EoS) governing structure of neutron stars in the framework of the Hartle-Thorne theory of rotating neutron stars applied for the observationally given rotation frequency f_{rot} approximate to 580 Hz (o