
The Spanning-tree Algorithm and Generating a Membrane Structure

Šárka Va vrecková

Silesian University in Opava, Bezručovo nám. 13, Opava, Czech Republic,
sarka.vavreckova@fpf.slu.cz

Abstract: Many articles on membrane systems seek to
minimize the number of membranes. But if these systems
were to be used for practical purposes, we may need a sys­

tem with a large number of membranes ­ the proper ar­

rangement of this structure would be very difficult. In this
paper, we propose a procedure inspired by the spanning­

tree algorithm to help optimize a complex structure of
membranes, independently of system rules.

1 Introduction

Membrane computing is a framework of parallel dis­

tributed processing introduced by Gheorghe Paun in 1998.
Research in this area is ongoing and many different types
of membrane systems have emerged since then. Informa­

tion is available at [12, 14, 15, 16], or the bibliography at
[18].

The intent of Membrane computing is to abstract com­

puting using hierarchies of membranes in living cells.
Since 2000, the term P Systems has been used for mathe­

matical models of membrane systems.
The minimum spanning tree (MST) for a given struc­

ture (network) of nodes is a substructure of the form of
a tree with optimal paths leading from nodes to the root
node, while maintaining the established rules for relation­

ships between nodes, even when the structure is changed
(adding new nodes, removing them or changing properties
of connections). There are many applications of the MST
algorithm in various areas ­ network design, network op­

timization, maximum bottleneck paths, image processing,
grouping objects into clusters of similar objects, approx­

imation of some NP­hard problems (e.g. traveling sales­

person problem), etc., see [1].
There are several algorithms to find the MST: Kruskal's

algorithm, Prim's algorithm, Boruvka's algoritm, the algo­

rithm in the STP protocol (Spanning­Tree Protocol). Some
of them are discused in [3, 7].

We will deal with the algorithm implemented in STP,
because, in addition to mathematical representation, it is
well described in the form of code, although for the pur­

poses of computer networks, and standardized. The MST
algorithm implemented in the STP protocol maintains a
loop­free logical topology with network devices (Ethernet
switches or bridges), keeping backup physical connections
that are immediately available in the event of a change in
logical topology. STP was standardized as IEEE 802.ID,

Copyright ©2020 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC B Y 4.0).

the current revision is IEEE 802.1D­2004, reaffirmed in
2011 [2, 17].

The MST algorithm is one of the graph algorithms, and
it is one of the most known greedy algorithms. Greedy al­

gorithms are heuristic problem­solving algorithms search­

ing for locally optimal choices with the intent to discover
a global optimum. More information is available at [6, 7].

The paper [8] describes the implementation of Dijk­

stra's algorithm (finding the shortest path in a graph) using
P system, which is closely related to the spanning­tree, but
a membrane system is a tool there, not a target.

A dynamic structure of membranes (P Systems with ac­

tive membranes) is discussed in [13] or [4], but the pre­

sented structure was able to dissolve membranes and to
divide a membrane into two successor membranes. Each
membrane has its polarization (electrical charge with val­

ues { — ,0,+}), and the polarization of a membrane can
be changed as well. A l l changes of membranes are made
using rules.

In this paper, we work with dynamics of membrane
structure in a slightly different manner. Changes in the
membrane structure are not built in the rules of the mem­

brane system, but they are meta­rules used to pre­prepare
the structure of the system, which will then work accord­

ing to its own rules.

2 Analogy between Membrane Structure
and Tree Structure

The basis of membrane systems is a membrane structure
inspired by the structure of a biological cell. A membrane
can contain certain objects and/or other (nested) mem­

branes. Thus, there may be a parent­child relationship be­

tween the membranes. Objects can be manipulated using
rules, in some membrane systems there are also rules for
manipulating membranes.

The membrane structure is strictly hierarchical, it can
be represented by a sequence of nested brackets or dis­

played by a tree in which the parent­child relationship cor­

responds to the inner­outer membrane relationship. One
membrane (the skin) is the main one (it contains all
the others), the remaining membranes always have one
parental membrane in which they are contained. Analo­

gously, the tree has one main (root) node, all other nodes
have exactly one parent node. The representation using a
tree intuitively leads to the possibility of using graph algo­

rithms designed for graphs in the form of a tree.

mailto:sarka.vavreckova@fpf.slu.cz

Figure 1: Example of Membrane Structure

The membrane structure can be represented graphically
using Venn diagrams, brackets, or a tree of nodes repre­
senting membranes. The membrane structure presented
in Figure 1 by Venn diagram is represented by the string
[[[]3 [}A }I [h [[b]6] i . and by the tree of nodes shown
in Figure 2.

Figure 2: Tree of nodes

The membranes are identified by their labels. The mem­
brane structure presented in Figures 1 and 2 uses simple
numbers as labels.

There are many articles and procedures that deal with
the rules and objects in the membrane structure, but the
membranes themselves are supposed to be "somehow
designed", their structure is not usually specifically ad­
dressed. It is not necessary for a few membranes; however,
if this structure is to be large and very complex (which can
happen, for example, in a structure for simulating the oper­
ation of many mutually hierarchically arranged systems),
we may encounter problems in the design of such a struc­
ture. In the case of a complicated structure, it may happen
that we do not correctly express suitable relationships be­
tween membranes, analogously in the tree we do not cor­
rectly express parent-child relationships between nodes.

A tool we use for the design of a membrane structure
can allow input in the form of nested brackets or in graph­
ical form. In brackets, we can get lost in small tens of
membranes, the graphic input is lucid only till a certain ex­
tent of the network: with tens to hundreds of membranes,
we can get lost here as well. Or defining parenthood in
membranes can be manually challenging for larger struc­
tures.

In this paper, we propose an optimization process that
can help organize a very large membrane structure. The
process remains laborious, but increases the probability of
obtaining a better optimized structure.

In local computer networks (LAN) we work with net­
work devices of the type switch. The role of the switch

is to receive a data unit called a frame from one port and
forward it to another port, behind which the target device
for the given frame is located.

In general, we find it useful when there are redundant
paths in a network. But if we create redundant paths in
the network of switches, we also create loops, which have
a negative impact on network operation (broadcast frames
intended for all nodes in the network flow by the network
in multiple copies, we call it "broadcast storm"1). The
solution is to leave redundant paths at the physical level
(cables), but remove them at the logical level (communica­
tion) by blocking data communication on a given connec­
tion. In case that the active path stops to forward frames,
one of the logicaly blocked paths whose physical connec­
tion exists will be activated.

In the case of switches, the entire process is directed by
the STP protocol, which implements the spanning-tree al­
gorithm. The purpose of this algorithm is to negotiate its
position in the hierarchy when connecting the switch to
the network and to keep the hierarchy in optimal condi­
tion according to the general rules and set priorities when
changing the network structure. Each node has assigned
its own priority (in a parent-child relationship, the parent
will have a smaller priority number). The algorithm does
not depend on the number of nodes, it runs in parallel at
all nodes and affects the structure of the entire network at
the same time.

When designing a large membrane structure, for each
membrane we usually have an idea of how deep in the
structure it should be roughly, and also which membranes
are considered parental for it. We want to choose one of
the potential parents for the given membrane in the opti­
mization process as the parent membrane, and thus actu­
ally include the given membrane into the structure (both
the membrane and the tree structure). We can solve the
choice of the main membrane or the root node of the tree
for the whole system similarly.

3 Preliminaries

3.1 Membrane Structure and P Systems

We assume the reader to be familiar with the basics of the
formal language theory and membrane computing. For
further details we refer to [10] and [16].

The definition of P Systems follows, but only some parts
of the definition are important for the purposes of this ar­
ticle. Different types of P Systems have quite different
definitions, and the mechanism we present is applicable to
various types.

Each membrane has its region: the space delimited by
the given membrane, all contained objects and subordinate
membranes (with their contained objects) are situated in
this region. The region of a membrane corresponds to the
subtree in the tree representation of the structure.

'The definition of broadcast storm can be found e.g. at https : //
www.techopedia.com/def inition/6270/broadcast-storm.

http://www.techopedia.com/def

Definition 1 ([15]). Let H be a set of labels. A P System
of a degree m, m> 1, is a construct

n=(V,T,C,H,wl,...,wm,(Rupi),...,(Rm,pm))

where:

(i) V is a nonempty alphabet, its elements are called ob­
jects,

(ii) T is an output alphabet, T C V ,

(Hi) C is a set of catalysts, C C V — T,

(iv) jX is a membrane structure consisting of m mem­
branes, the membranes are labeled by the elements
ofH,

(vj Wj, 1 < i < m, are strings representing multisets over
V associated with the region of the i — th membrane
in pL,

(vi) Ri, 1 < i < m, are finite sets of evolution rules asso­
ciated with the region of the i — th membrane in jX;
an evolution rule is a pair (u,v), also written u —> v,
where

• u is a string over V,
• v = v1 or v = v18, where v' is a string over

{ahere,aout,ainj \a£V, 1 < j < m}, and 8 is a

special symbol ^ V representing dissolution of
membrane,

(vii) pi, \<i<m, is a partial order relation over Rj spec­
ifying the priorities of the rules in /?;.

Details and examples can be found in [15].

3.2 The Spanning-tree Algorithm

For the purposes of this article, we will simplify the orig­
inal spanning-tree algorithm and list only those parts of it
that we will use for operations with a membrane structure.
The full algorithm can be found in [9] (multiple pages) and
certainly [2]. The presented algorithms are created loosely
according to [9, 2, 5].

As mentioned above, the spanning-tree algorithm is the
parallel algorithm working on nodes of a network, e.g. on
interconnected network switches. The goal is to transform
the network into a tree with one root node. The process of
transformation is called convergence.

The algorithm was originally intended for network de­
vices called bridge, so the term "bridge" also appears in
the following text.

Assume a network of nodes (bridges, switches, mem­
branes,...), interconnected in some manner. There can
be more than one path between some nodes, the structure
does not yet have the form of a tree, the convergence pro­
cess is in progress.

Every node keeps the following information:

• BID (Bridge ID) consisting of two parts:

- priority of the node,
- unique devicelD, e.g. M A C address of a switch,

BID can be represented by the vector
(priority; devicelD)
or by concatenation of these numbers (i.e. a number),
the priority is more significant item than devicelD,

• rootID is BID of the root node, so every node knows
the root,

• root path cost (sum of costs of all links on the way to
the root),

• each port linked to a neighbor has its portID con­
sisting of two parts: port priority and port number
(counted from 1), these two properties can be repre­
sented by a vector or concatenation similarly to BID,

• each port has three additional features: role, current
status, and cost of link.

The port status is either forwarding (active) or blocking
(the full algorithm defines more than two port states, also
depending on the protocol version).

The port role is one of the following:

• root port - the active port through which the path to
the root node leads (leading to the parent node),

• designated port - the active port leading to one of the
child nodes (or leading to another subtree, blocked by
the neighbor),

• alternate port - non-active (blocked) port.

The original algorithm distinguishes two types of blocked
ports (alternate or backup).

Algorithm 1: Basic Structures and Functions
node : BID (priority, label),

rootID (priority, label),
RPcost,
rootPortID, //portID of the root port
//ports are indexed by portID:
ports[] (role, state, cost,

neighborBID, neighborPortID);

function node.initO
begin

//Neighbors' BIDs and their portlDs are
determined later from obtained BPDUs.

//Setting port costs,...
self.IAmNewRootO; //Defined in Algorithm 2.

end

//No BPDU came from the neighbor for a hold
time: the link or the neighbor is inoperative.

function node.noRespFromNeigh(recPortlD)
begin

if (recPortID = = self.rootPortID) then
//The root port waiting in vain for a BPDU.

The root has become unavailable, maybe
I am the new root.

self.IAmNewRootO;
end

The port cost (or link cost, it should be the same value
on the both sides of the link) is used to calculate the opti­
mal path over network. The faster the port/link, the lower
this number (and better link).

The representation of a node and its initialization can be
found in Algorithm 1.

The nodes communicate with each other using BPDU
messages (Bridge Protocol Data Unit). B P D U is valid
only for one link and the corresponding ports, between
two neighbors; it is not resent to another link, the neigh­
bor generates the own BPDUs for its links. Every B P D U
contains, inter alia, the following information:

• BID of the sender,

• rootID (BID of the node that is being considered root
by the sender),

• root path cost (cost of the path from the sender to the
root),

• portID and cost of the port the B P D U is sent over,

• other information.

The neighbors know each other through the BPDUs, in­
cluding BIDs and portlDs, and the root path cost is calcu­
lated by adding the cost of the link to the root path cost
info obtained from the neighbor.

There are several types of BPDUs: Proposal BPDU is
sent downwards to inform its child nodes about the root
node, Agreement BPDU is sent upwards to agree with the
proposed root setting (see Algorithm 4), and others which
are not necessary for our purposes.

The BPDUs are also used as a keep-alive mechanism
between neighbor nodes and the neighbors inform each
other about their parameters (BIDs, port numbers, etc.).

Presume a situation where a new node is added to the
network. This node first assumes that it is the root, and
starts sending BPDUs with BID = rootID. A l l its ports have
the role DP (designated port). Its neighbors receive the
B P D U with this information and compare the reported
rootID with the stored value. There are two possibilities:

1. the reported rootID is greater than the stored rootID
- the new node does not become the root,

2. the reported rootID is less than the stored rootID -
the new node becomes the root.

The function node.IAmNewRoot() in Algorithm 2 illus­
trates this situation.

Example 1. The numbers devicelD are usually MAC ad­
dresses. For demonstration reasons, we will use only
"small" numbers for the both priorities and devicelDs.

If a node has the stored rootID = (32; 56) and an­
other node is reporting rootID = (31; 82), the reported
node becomes the new root (the lower number of prior­
ity means precedence). But if another node later reports
rootID = (31; 95), the reported node will not become the
root (its priority is the same as the root priority, but its
devicelD is greater, which means no precedence).

Algorithm 2: Auxiliary functions
function node.changeRootPort(newRoofPorfID,

newPorfRole)
begin

//rootPortID==0 would mean that I am the root
if (self.rootPortID != 0) then

self.ports[self.rootPortID].state = blocking;
self .ports [self .rootPortID] .role =

newPorfRole;
end
self.rootPortID = newRootPortID;
self.ports [newRootPortID].state = blocking;
self.ports [newRootPortID].role = rootPort;

end

//Obtained info about new root or root path cost
changed, do synchronization downwards.

function node.makeSync(sender)
begin

//Only connected/used ports are processed:
foreach (port in self.ports) do

port.state = blocking;
self.ports [self.rootPortID].state = forwarding;
self.ports [self.rootPortID] .sendBPDU_agree();
foreach (port in self.ports) do

if ((port.role = = designatedPort)
or (port.role = = alternatePort)) then

port.sendBPDU_proposal();
end

function node.IAmNewRootO
begin

self.rootID = self.BID;
self.RPcost = 0;
self.rootPortID = 0;
foreach (port in self.ports) do

port.role = designatedPort;
port.state = blocking;
port.sendBPDU_proposal();

end
end

If a node obtains a B P D U with the declared rootID less
(i.e. better) than its stored rootID, it updates the own struc­
tures and sends the BPDUs to all neighbors (except of the
original sender), so these neighbors learn the change, sub­
sequently their neighbors learn the change, etc.

The root node has the root path cost = 0 for all its ports,
so the newly connected node (considering to be root) sends
BPDUs with this value to its neighbors. Each receiving
neighbor adds the cost of the receiving port/link to the ob­
tained root path cost information (the first command of the
function node.getBPDU_proposal() in Algorithm 3). The
next step depends on which port the B P D U came over. The
first part of Algorithm 3 (the first "if" command block) i l -

Algorithm 3: Getting BPDU: Proposal

// BPDU of the type "Proposal" received on the port "recPortID" from the given "sender" node.
function node.getBPDU_proposal(recPortID, sender)
begin

refRPcost = sender.RPcost + self.ports [recPortID].cost; //Root path cost from sender + cost between us
self.ports[recPortID].neighborBID = sender.BID; //Discovering neighbor's BID
self.ports[redPortID].neighborPortID = sender. portID;

if (self.ports[recPortID].role = = rootPort) then // Info originated from the root port is trusted.
if ((sender.rootID < self.rootID) or ((sender.rootID = = self.rootID) and (refRPcost != self.RPcost))) then

//Path to the root has changed, but the direction remains.
self.ports[self.rootPortID].state = blocking; //blocking before any change of ports
self.rootID = sender.rootID;
self.RPcost = refRPcost;
self.makeSync(sender); // including sending BPDU Agreement upwards and Proposal downwards

else if (sender.rootID > self .BID) then //The root has become unavailable, maybe I am the new root.
| self.IAmNewRoot()

return;
end
if (sender.rootID < self.rootID) then //New root notified, the reported rootID is better than I know:

self.changeRootPort(recPortID, designatedPort); //The receiving port becomes my new root port.
self.rootID = sender.rootID;
self.RPcost = refRPcost;
self.makeSync(sender);

else if (sender.rootID = = self.rootID) then
//The same root, maybe some other change - root path cost or direction?
if (refRPcost < self.RPcost) then //The root path cost has changed to a better value:

changeRootPort(recPortID, designatedPort);
self.RPcost = refRPcost;
self.makeSync(sender);

else if (refRPcost > self.RPcost) then //The root path cost has changed to a worse value:
if (sender.BID > self .BID) then //The sender is either under me or inside another subtree

self.ports[recPortID].role = designatedPort; //previously could have been alternatePort
self.makeSync(sender);

else //means: (sender.BID < self.BID), the sender is above me or inside another subtree
self.ports[recPortID].state = blocking;
self .ports [recPortID].role = alternatePort;

end

else //The same root and root path cost, but from different direction, choosing more eligible parent:
if (sender.BID > self.ports[rootPortID].neighborBID) then //The present parent is better, no change.

self.makeSync(sender);
else if ((sender.BID < self.ports[rootPortID].neighborBID)

or ((sender.BID == self.ports[rootPortID].neighborBID)
and (self.ports[recPortID].neighborPortID < self.ports[rootPortID].neighborPortID))) then
//The potential new parent has better BID, changing the root port:
foreach (port in self.ports) do if (port.role = = alternatePort) then port.role = designatedPort;
self.changeRootPort(recPortID, alternatePort);
foreach (port in self.ports) do if (port.role = = designatedPort) then

port.state = blocking;
port.sendBPDU_proposal();

end
end

end
end

end

lustrates the case for the root port of the node, while the
next code represents the case for designated and alternate
ports.

The node considers the reported rootID, root path cost
and other parameters to decide the best direction to the root
and the corresponding port roles. If the B P D U with the
correct rootID and the same lowest root path cost comes
to more than one port (and therefore it is not possible to
select the root port according to the above procedure), the
lower sender BID decides. If the sending nodes have the
same BID (e.g. when two or more parallel links lead be­
tween two nodes), the portlDs of the sender's port and the
neighbor's port leading to current root are compared and
the port with the neighbor's lower portID is selected as the
root port.

The configured ports are in the blocking state during
determining port roles.

The both the reported rootID and the root path cost to­
gether flood in all directions from the root node: first to
its neighbors (they count the cost of the link leading to the
root plus zero), then to their neighbors (the value increases
again, they add the cost of the link to the obtained value),
etc. Each node gets the necessary information gradually,
the topology may change several times during the conver­
gence; when a node detects a root change, it communi­
cates information about the new root to its ports (except
the root port) during the synchronization process (the func­
tion node.makeSync(sender), see Algorithm 2).

Whenever there is a change in the structure, in the prior­
ities of nodes or ports, etc., this procedure starts again and
the whole network gradually converges. If a node finds out
about the change:

• it evaluates the change reported in the B P D U pro­
posal,

• if the node agrees, it changes its configuration and
sends back the B P D U agreement,

• it blocks the ports to other neighbors and sends them
the B P D U proposal.

In case that a neighbor agrees, it sends back the B P D U
agreement (the port leading to this neighbor is activated
with the role "designated"). If it does not agree, it sends
back the own proposal in the B P D U proposal.

Algorithm 4: Getting BPDU: Agreement

//BPDU "Agreement" received on the port
"recPortID", my proposal is accepted by the
neighbor

function node. getBPDU_agree(recPortID)
begin

self, ports [recPortID].role = designatedPort;
self.ports[recPortID].state = forwarding;

end

4 Optimization of Membrane Structure

The algorithm can be run over an existing graph from
which we want to create a tree, or individual elements
(membranes) can be added gradually.

Consider a set of membranes, each of them has

• contained objects, properties, functions, rules, etc.,
according to the type of membrane system,

• its own identifier (label) and priority (i.e. BID); the
priority is added as metainformation for the purposes
of the algorithm,

• the identifier and priority of the root membrane (skin;
i.e. rootID); it will probably be appropriate to deter­
mine the skin membrane in advance and assign it the
lowest BID number directly,

• ports to several possible neighbors in the membrane
structure (potential parents and children) - links (re­
lations) to them, for each port we need its portID,
the neighbor BID and the portID for the link on the
neighbor's side, each such link is evaluated by cost as
metainformation.

There may be left default values for added properties, or
we can set them manually to impact the resulting structure.

To make the procedure as illustrative as possible, we
use the representation of the membrane structure in the
form of a tree. The procedure described in Algorithms
1, 2, 3, and 4, is intended for network devices (however,
very simplified), but we can use this simplified version for
membranes and just modify the terms.

Algorithm 5 is created by modifying Algorithm 1, the
remaining algorithms can be modified in a similar way.
The port priorities are not necessary (we need just port la­
bels as portlDs), because we do not assume multiple con­
nections between two membranes.

Example 2. Let us demonstrate the above outlined pro­
cedure. For the sake of clarity, the individual membranes
are created sequentially, but we would achieve the same
result even if all membranes were created in parallel or
when the order was changed, only the convergence pro­
cess would pass in different timing. The following initial
structure is given:

3 .1 .2 2 i i 1 3 . i 6

Figure 3: Initial structure for Example 2

There are 7 membranes with connections and link costs,
the ports are marked in a smaller font and with a point, e.g.
the membrane no. 3 has the ports 3.1 (leading to the mem­
brane no. 2) and 3.2 (leading to the membrane no. 4). All

Algorithm 5: Base for Membranes
membrane: BID (priority, label),

rootID (priority, label), RPcost,
rootPortID,
ports[] (role, state, cost,

neighborBID, neighborPortID);

function membrane.create(BID, neighs[], costs[])
begin

self.BID = BID;
int c = neighs.count;
if c> 0 then

for (int i = 1; (i <= MaxPorts) and (i <= c);
i++) do

self.ports[i].neighborBID = neighs[i];
self.ports[i].cost = costs[i];
... ; //according to implementation

end
self.IAmNewRootO;

end

function membrane.noRespFromNeigh(recPortlD)
begin

if (recPortID = = self.rootPortID) then
| self.IAmNewRootO;

end

membranes have the same priority: only labels are used
to make decisions when comparing BIDs. This structure is
not in the form of tree, so we apply the transformation.

Assume that the structure is formed gradually, for ex­
ample from lower labels till larger labels (but the order is
not important). The steps are as follows:

• the membrane no. 1 is created, it is the root (the skin
membrane), all its ports have the role DP,

• the membrane no. 2 is created and connected to the
membrane no. 1; considered to be the root (sending
Proposal), but receives the message from no. 1 with
the lower (i.e. better) rootID (so sending back Agree­
ment), the root is no. 1, the port gets the role RP,

• the membrane no. 3 is created, connected to no. 2;
considered to be the root (sending Propossal), but
receives back the message from no. 2 with the lower
rootID (sending back Agreement), the root is no. 1,
the port 3.1 gets the role RP,

• the membrane no. 4 is created, connected to no. 2 and
no. 3; considered to be the root (sending Proposal),
but receives back the message from no. 2 and 3 with
the lower rootID (sending back Agreement), the root
is no. 1; the root path cost through no. 2 is 10+ 10 =
20, through no. 3 is 10+ 15 + 12 = 37, so the port 4.2
gets the role RP, the port 4.1 gets the role AP (because
sender.BID < self.BID), the port 3.1 of the membrane
no. 3 goes to the role DP,

the membrane no. 5 is created, connected to no. 1 and
4; considered to be the root (sending Proposal), but
receives back the message from the neighbors with
the lower rootID (sending back Agreement), the root
is no. 1; the root path cost from no. 1 is better (0 +
12), so the port 5.1 gets the role RP, the port 5.2 gets
th role AP, the opposite port 4.3 gets the role DP,
the membrane no. 4 found an alternative path to the
root (no.l) through no. 5 with the same root path
cost; but the neighbor no. 2 has better BID, so the
root port remains,

1,

Figure 4: Modified structure (tree) for Example 2

• the membrane no. 6 is created, connected to no. 1, af­
ter exchanging messages the root is no. 1, the port 6.1
gets the role RP,

• the membrane no. 7 is created, connected to no. 5 and
6, after exchanging messages the root is no 1, the port
7.1 gets the role RP (the root path cost through no. 5
is better), the opposite port 5.3 gets the role DP, the
port 7.2 gets the role AP and the opposite port 6.2
gets the role DP.

Example 3. Setting various membrane priorities and dif­
ferent link costs causes the topology change. Let us take
the previsous example and set the priority of the membrane
no. 2 to 100, the others to 200, and change the cost of the
link between membranes no. 6 and 7 to the value 8.

(200,3) (100,2)
.1 .2 .1

(200,1) (200,6)
.1 _ .3 .1

cost= 10

cost
= 12

cost= 10

.2

cost

(200,4) (200,5) (200,7)

Figure 5: Initial structure for Example 3

As we can see (Figure 6), the structure has changed
quite a lot.

2,

Figure 6: Modified structure (tree) for Example 3

5 Conclusions
The aim of this work is not to design a comprehensive tool
for simulation of P systems, there is not enough space for
that. The goal is only to design a procedure for generating
suitable input, e.g. for P-Lingua type languages[11].

Membrane systems can be used to simulate complex
(real) systems with many relations. Real systems are be­
ing changed over time (not only by deleting existing mem­
branes) and the proposed procedure offers a way of repre­
senting mutual relations that can be dynamically adapted.

The two examples show the consequences for the
change in the membrane structure caused by the interven­
tion in only two parameters - the priority of one membrane
and the cost of one link (relation).

There is only one problem left to solve: if there are sev­
eral potential child membranes before using the algorithm
and only some of them are selected by the algorithm, or
the parent-child relationship may change, then some rules
ai„j may lose relevance. This must be taken into account
when designing evolution rules, or the presented algorithm
can be enriched with the possibility of dynamic adaption
of this type of evolution rules; of course, if the side effects
of this modification will be acceptable.

The work is supported by The Ministry of Educa­
tion, Youth and Sports of the Czech Republic from the
National Programme of Sustainability (NPU II) project
IT4Innovations excellence in science - LQ1602.

References
[1] Applications of Minimum Spanning Tree

Problem [online]. Geeks for Geeks (2018).

U R L : https : //www. geeksf orgeeks . org/

applications-of-minimum-spanning-tree/ (Ac­
cessed August 14, 2020)

[2] 802.1D-2004 - IEEE Standard for Local and metropolitan
area networks: Media Access Control (MAC) Bridges [on­
line]. IEEE (2011). U R L : https://ieeexplore.ieee.
org/document/1309630 (Accessed June 4, 2020)

[3] Bazlamacci, C .E , Hindi, K.S.: Minimum-weight span­
ning tree algorithms: A survey and empirical study.
Computers & Operations Researche, vol. 28, issue 8,

ISSN 0305-0548, pp. 767-785 (2001), online avail­
able at: http://www.sciencedirect.com/science/

article/pii/S0305054800000071

[4] Calude, C , Paun, Gh.: Computing with Cells and Atoms.
Taylor and Francis, London, 2000 (Chapter 3: "Computing
with Membranes").

[5] ComputerNetworkingNotes: STP - Spanning Tree Pro­
tocol Explained With Examples [online]. Networking
Tutorials (2020). Online available at https://www.
computernetworkingnotes.com/ccna-study-guide/

stp-spanning-tree-protocol-explained-with-examples .

html (Accessed June 4, 2020)

[6] Curtis, S.A.: The classification of greedy algorithms. E l ­
sevier, 2003. Also available at https://core.ac.uk/

download/pdf/82042073.pdf (Accessed June4, 2020)

[7] Greenberg, H.J.: Greedy Algorithms for Minimum Span­
ning Tree [online]. Univeristy of Colorado (1998), online
available at http: //glossary. computing, society.

informs.org/notes/spanningtree.pdf (Accessed
June 4, 2020)

[8] Guo, P., Quan, Ch., Ye, L. : UPSimulator: A general P sys­
tem simulator. Knowledge-Based Systems, vol. 170, 2019,
pp. 20-25. ISSN: 0950-7051.

[9] Hewlett Packard Enterprise: Calculation process of the
STP algorithm [online]. HPE FlexNetwork L A N Switch­
ing Configuration Guide (2017), online available at
https://techhub.hpe.com/eginfolib/networking/

docs/switches/7500/5200-1938a_12-lan.cg/

content/495503520.htm (Accessed June 11, 2020)

[10] Hopcroft, J.E., and Ullman, J.D.: Introduction to Au­
tomata Theory, Languages and Computation. Addison-
Wesley, 1979.

[11] P-Lingua, Main Page [online]. Online available at http: //
www.p-lingua.org/wiki/index.php/Main_Page (Ac­
cessed August 11, 2020)

[12] Päun, Gh.: Computing with membranes. J. Comput. Syst.
Sei. 61(1), 108-143 (2000). Turku Center for Computer
Science-TUCS report 208, November 1998.

[13] Päun, Gh.: Computing with membranes - A Variant: PSys-
tems with Polarized Membranes. Intern. J. of Foundations of
Computer Science, vol. 11, issue 1 (2000), pp. 167-182.

[14] Päun, Gh.: Membrane Computing: A n Introduction.
Springer, Heidelberg (2002).

[15] Päun, Gh., Rozenberg, G.: A Guide to Membrane Com­
puting. Theor. Comp. Science, vol. 287, issue 1, pp. 73-100
(2002).

[16] Päun, Gh., Rozenberg, A. , Salomaa, A . (eds.): The Ox­
ford Handbook of Membrane Computing. Oxford University
Press, New York (2010).

[17] US Patent "Using Spanning Tree Protocol (STP) to En­
hance Layer-2 Network Topology Maps", patent number US
8,045,488 B2, 2011. Also available at https: //patents.
google.com/patent/US8045488B2/en. (Accessed June
4, 2020)

[18] The P Systems Website: http://psystems .eu (Accessed
June 4, 2020)

https://ieeexplore.ieee
http://www.sciencedirect.com/science/
https://www
https://core.ac.uk/
https://techhub.hpe.com/eginfolib/networking/
http://www.p-lingua.org/wiki/index.php/Main_Page
http://google.com/patent/US8045488B2/en
http://psystems

