D 2020

Desirable Properties of Weighting Vector in Pairwise Comparisons Matrix With Fuzzy Elements

RAMÍK, Jaroslav

Basic information

Original name

Desirable Properties of Weighting Vector in Pairwise Comparisons Matrix With Fuzzy Elements

Name in Czech

Požadované vlastnosti váhového vektoru v matici párových porovnání s fuzzy prvky

Authors

RAMÍK, Jaroslav (203 Czech Republic, guarantor, belonging to the institution)

Edition

Brno, Czech Republic, 38th International Conference on Mathematical Methods in Economics, p. 481-487, 7 pp. 2020

Publisher

Mendel University Brno

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10102 Applied mathematics

Country of publisher

Czech Republic

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

electronic version available online

RIV identification code

RIV/47813059:19520/20:A0000121

Organization unit

School of Business Administration in Karvina

ISBN

978-80-7509-734-7

Keywords (in Czech)

vícekriteriální optimalizace; matice párových porovnání; fuzzy prvky; alo-grupyů konzistenceů prioritní vektor

Keywords in English

multi-criteria optimization; pair-wise comparisons matrix; fuzzy elements; alo-group; consistency; priority vector

Tags

International impact, Reviewed

Links

GA18-01246S, research and development project.
Změněno: 23/1/2021 20:59, prof. RNDr. Jaroslav Ramík, CSc.

Abstract

V originále

We deal with pairwise comparisons matrix with fuzzy elements (FPCM). Fuzzy elements are appropriate whenever the decision maker (DM) is uncertain about the value of his/her evaluation of the relative importance of elements in question, or, when aggregating crisp pairwise comparisons of a group of decision makers in the group DM problem. The problem is formulated in a general setting investigating pairwise comparisons matrices with elements from abelian linearly ordered group (alo-group). Such an approach enables extensions of traditional multiplicative, additive or fuzzy approaches. Continuing our research in \cite{Ramik2018}, here we propose a new order preservation concept based on alpha-cuts. Then we define an innovative concept of (weak) consistency of FPCMs, propose some desirable properties of priority vectors, and derive necessary and sufficient conditions for the existence of coherent vector (CV) and intensity vector (IV) of a FPCM. Finally, we formulate the optimization problem and derive the priority vector with the desirable properties. Illustrating examples are presented and discussed.