Detailed Information on Publication Record
2020
Desirable Properties of Weighting Vector in Pairwise Comparisons Matrix With Fuzzy Elements
RAMÍK, JaroslavBasic information
Original name
Desirable Properties of Weighting Vector in Pairwise Comparisons Matrix With Fuzzy Elements
Name in Czech
Požadované vlastnosti váhového vektoru v matici párových porovnání s fuzzy prvky
Authors
RAMÍK, Jaroslav (203 Czech Republic, guarantor, belonging to the institution)
Edition
Brno, Czech Republic, 38th International Conference on Mathematical Methods in Economics, p. 481-487, 7 pp. 2020
Publisher
Mendel University Brno
Other information
Language
English
Type of outcome
Stať ve sborníku
Field of Study
10102 Applied mathematics
Country of publisher
Czech Republic
Confidentiality degree
není předmětem státního či obchodního tajemství
Publication form
electronic version available online
RIV identification code
RIV/47813059:19520/20:A0000121
Organization unit
School of Business Administration in Karvina
ISBN
978-80-7509-734-7
Keywords (in Czech)
vícekriteriální optimalizace; matice párových porovnání; fuzzy prvky; alo-grupyů konzistenceů prioritní vektor
Keywords in English
multi-criteria optimization; pair-wise comparisons matrix; fuzzy elements; alo-group; consistency; priority vector
Tags
International impact, Reviewed
Links
GA18-01246S, research and development project.
Změněno: 23/1/2021 20:59, prof. RNDr. Jaroslav Ramík, CSc.
Abstract
V originále
We deal with pairwise comparisons matrix with fuzzy elements (FPCM). Fuzzy elements are appropriate whenever the decision maker (DM) is uncertain about the value of his/her evaluation of the relative importance of elements in question, or, when aggregating crisp pairwise comparisons of a group of decision makers in the group DM problem. The problem is formulated in a general setting investigating pairwise comparisons matrices with elements from abelian linearly ordered group (alo-group). Such an approach enables extensions of traditional multiplicative, additive or fuzzy approaches. Continuing our research in \cite{Ramik2018}, here we propose a new order preservation concept based on alpha-cuts. Then we define an innovative concept of (weak) consistency of FPCMs, propose some desirable properties of priority vectors, and derive necessary and sufficient conditions for the existence of coherent vector (CV) and intensity vector (IV) of a FPCM. Finally, we formulate the optimization problem and derive the priority vector with the desirable properties. Illustrating examples are presented and discussed.