J 2020

Charged fluids encircling compact objects: force representations and conformal geometries

KOVÁŘ, Jiří, Yasufumi KOJIMA, Petr SLANÝ, Zdeněk STUCHLÍK, Vladimír KARAS et. al.

Základní údaje

Originální název

Charged fluids encircling compact objects: force representations and conformal geometries

Autoři

KOVÁŘ, Jiří (203 Česká republika, domácí), Yasufumi KOJIMA, Petr SLANÝ (203 Česká republika, domácí), Zdeněk STUCHLÍK (203 Česká republika, domácí) a Vladimír KARAS (203 Česká republika)

Vydání

Classical and Quantum Gravity, 2020, 0264-9381

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Kód RIV

RIV/47813059:19630/20:A0000006

Organizační jednotka

Fyzikální ústav v Opavě

UT WoS

000590715200001

Klíčová slova anglicky

charged fluid toroidal structure; compact object; gravitational field; electromagnetic field; general relativity; force formalism; conformal geometry

Příznaky

Mezinárodní význam, Recenzováno

Návaznosti

GA19-03950S, projekt VaV.
Změněno: 23. 3. 2021 18:05, RNDr. Jan Hladík, Ph.D.

Anotace

V originále

Charged fluids rotating around compact objects can form unique equilibrium structures when ambient large-scale electromagnetic fields combine with strong gravity. Equatorial as well as off-equatorial toroidal structures are among such figures of equilibrium with a direct relevance for astrophysics. To investigate their geometrical shapes and physical properties in the near-horizon regime, where effects of general relativity play a significant role, we commonly employ a scheme based on the energy-momentum conservation written in a standard representation. Here, we develop its interesting alternatives in terms of two covariant force representations, both based on a hypersurface projection of the energy-momentum conservation. In a proper hypersurface, space-like forces can be defined, following from a decomposition of the fluid four-acceleration. Each of the representations provides us with an insight into properties of the fluid flow, being well reflected in related conformal hypersurface geometries; we find behaviour of centrifugal forces directly related to geodesics of these conformal hypersurfaces and their embedding diagrams. We also reveal correspondence between the charged fluid flow world-lines from an ordinary spacetime, and world-lines determined by a charged test particles equation of motion in a conformal spacetime.