J 2020

Quasinormal modes, stability and shadows of a black hole in the 4D Einstein-Gauss-Bonnet gravity

KONOPLYA, Roman a Antonina Frantsivna ZINHAILO

Základní údaje

Originální název

Quasinormal modes, stability and shadows of a black hole in the 4D Einstein-Gauss-Bonnet gravity

Autoři

KONOPLYA, Roman (804 Ukrajina, domácí) a Antonina Frantsivna ZINHAILO (804 Ukrajina, domácí)

Vydání

European Physical Journal C, 2020, 1434-6044

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10303 Particles and field physics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Kód RIV

RIV/47813059:19630/20:A0000008

Organizační jednotka

Fyzikální ústav v Opavě

UT WoS

000593720200003

Klíčová slova anglicky

SYMMETRICAL-SOLUTIONS; MASTER-EQUATIONS; PERTURBATIONS; TENSOR

Příznaky

Mezinárodní význam, Recenzováno

Návaznosti

GA19-03950S, projekt VaV.
Změněno: 31. 3. 2022 10:31, Mgr. Pavlína Jalůvková

Anotace

V originále

Recently a D-dimensional regularization approach leading to the non-trivial (3 + 1)-dimensional Einstein-Gauss-Bonnet (EGB) effective description of gravity was formulated which was claimed to bypass the Lovelock's theorem and avoid Ostrogradsky instability. Later it was shown that the regularization is possible only for some broad, but limited, class of metrics and Aoki et al. (arXiv:2005.03859) formulated a well-defined four-dimensional EGB theory, which breaks the Lorentz invariance in a theoretically consistent and observationally viable way. The black-hole solution of the first naive approach proved out to be also the exact solution of the well-defined theory. Here we calculate quasi-normal modes of scalar, electromagnetic and gravitational perturbations and find the radius of shadow for spherically symmetric and asymptotically flat black holes with Gauss-Bonnet corrections. We show that the black hole is gravitationally stable when (-16M(2) < alpha less than or similar to 0.6M(2)). The instability in the outer range is the eikonal one and it develops at high multipole numbers. The radius of the shadow R-Sh obeys the linear law with a remarkable accuracy.