2020
Quasinormal modes, stability and shadows of a black hole in the 4D Einstein-Gauss-Bonnet gravity
KONOPLYA, Roman a Antonina Frantsivna ZINHAILOZákladní údaje
Originální název
Quasinormal modes, stability and shadows of a black hole in the 4D Einstein-Gauss-Bonnet gravity
Autoři
KONOPLYA, Roman (804 Ukrajina, domácí) a Antonina Frantsivna ZINHAILO (804 Ukrajina, domácí)
Vydání
European Physical Journal C, 2020, 1434-6044
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10303 Particles and field physics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/47813059:19630/20:A0000008
Organizační jednotka
Fyzikální ústav v Opavě
UT WoS
000593720200003
Klíčová slova anglicky
SYMMETRICAL-SOLUTIONS; MASTER-EQUATIONS; PERTURBATIONS; TENSOR
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Návaznosti
GA19-03950S, projekt VaV.
Změněno: 31. 3. 2022 10:31, Mgr. Pavlína Jalůvková
Anotace
V originále
Recently a D-dimensional regularization approach leading to the non-trivial (3 + 1)-dimensional Einstein-Gauss-Bonnet (EGB) effective description of gravity was formulated which was claimed to bypass the Lovelock's theorem and avoid Ostrogradsky instability. Later it was shown that the regularization is possible only for some broad, but limited, class of metrics and Aoki et al. (arXiv:2005.03859) formulated a well-defined four-dimensional EGB theory, which breaks the Lorentz invariance in a theoretically consistent and observationally viable way. The black-hole solution of the first naive approach proved out to be also the exact solution of the well-defined theory. Here we calculate quasi-normal modes of scalar, electromagnetic and gravitational perturbations and find the radius of shadow for spherically symmetric and asymptotically flat black holes with Gauss-Bonnet corrections. We show that the black hole is gravitationally stable when (-16M(2) < alpha less than or similar to 0.6M(2)). The instability in the outer range is the eikonal one and it develops at high multipole numbers. The radius of the shadow R-Sh obeys the linear law with a remarkable accuracy.