J 2020

The equivalence problem for generic four-dimensional metrics with two commuting Killing vectors

FERRAIOLI, Diego Catalano a Michal MARVAN

Základní údaje

Originální název

The equivalence problem for generic four-dimensional metrics with two commuting Killing vectors

Autoři

FERRAIOLI, Diego Catalano (380 Itálie) a Michal MARVAN (203 Česká republika, domácí)

Vydání

Annali di Matematica Pura ed Applicata, HEIDELBERG, SPRINGER HEIDELBERG, 2020, 0373-3114

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10101 Pure mathematics

Stát vydavatele

Německo

Utajení

není předmětem státního či obchodního tajemství

Kód RIV

RIV/47813059:19610/20:A0000066

Organizační jednotka

Matematický ústav v Opavě

UT WoS

000494394800001

Klíčová slova anglicky

Differential invariants; Metric equivalence problem; Kundu class

Štítky

Příznaky

Mezinárodní význam, Recenzováno

Návaznosti

GBP201/12/G028, projekt VaV.
Změněno: 19. 3. 2021 12:29, Mgr. Aleš Ryšavý

Anotace

V originále

We consider the equivalence problem of four-dimensional semi-Riemannian metrics with the two-dimensional Abelian Killing algebra. In the generic case we determine a semi-invariant frame and a fundamental set of first-order scalar differential invariants suitable for solution of the equivalence problem. Genericity means that the Killing leaves are not null, the metric is not orthogonally transitive (i.e., the distribution orthogonal to the Killing leaves is non-integrable), and two explicitly constructed scalar invariants C rho and lC are nonzero. All the invariants are designed to have tractable coordinate expressions. Assuming the existence of two functionally independent invariants, we solve the equivalence problem in two ways. As an example, we invariantly characterize the Van den Bergh metric. To understand the non-generic cases, we also find all Lambda-vacuum metrics that are generic in the above sense, except that either C rho or lC is zero. In this way we extend the Kundu class to Lambda-vacuum metrics. The results of the paper can be exploited for invariant characterization of classes of metrics and for extension of the set of known solutions of the Einstein equations.