2020
The equivalence problem for generic four-dimensional metrics with two commuting Killing vectors
FERRAIOLI, Diego Catalano a Michal MARVANZákladní údaje
Originální název
The equivalence problem for generic four-dimensional metrics with two commuting Killing vectors
Autoři
FERRAIOLI, Diego Catalano (380 Itálie) a Michal MARVAN (203 Česká republika, domácí)
Vydání
Annali di Matematica Pura ed Applicata, HEIDELBERG, SPRINGER HEIDELBERG, 2020, 0373-3114
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10101 Pure mathematics
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Kód RIV
RIV/47813059:19610/20:A0000066
Organizační jednotka
Matematický ústav v Opavě
UT WoS
000494394800001
Klíčová slova anglicky
Differential invariants; Metric equivalence problem; Kundu class
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Návaznosti
GBP201/12/G028, projekt VaV.
Změněno: 19. 3. 2021 12:29, Mgr. Aleš Ryšavý
Anotace
V originále
We consider the equivalence problem of four-dimensional semi-Riemannian metrics with the two-dimensional Abelian Killing algebra. In the generic case we determine a semi-invariant frame and a fundamental set of first-order scalar differential invariants suitable for solution of the equivalence problem. Genericity means that the Killing leaves are not null, the metric is not orthogonally transitive (i.e., the distribution orthogonal to the Killing leaves is non-integrable), and two explicitly constructed scalar invariants C rho and lC are nonzero. All the invariants are designed to have tractable coordinate expressions. Assuming the existence of two functionally independent invariants, we solve the equivalence problem in two ways. As an example, we invariantly characterize the Van den Bergh metric. To understand the non-generic cases, we also find all Lambda-vacuum metrics that are generic in the above sense, except that either C rho or lC is zero. In this way we extend the Kundu class to Lambda-vacuum metrics. The results of the paper can be exploited for invariant characterization of classes of metrics and for extension of the set of known solutions of the Einstein equations.