Detailed Information on Publication Record
2020
Generalized symmetries and conservation laws of (1+1)-dimensional Klein-Gordon equation
OPANASENKO, Stanislav and Roman POPOVYCHBasic information
Original name
Generalized symmetries and conservation laws of (1+1)-dimensional Klein-Gordon equation
Authors
OPANASENKO, Stanislav (804 Ukraine) and Roman POPOVYCH (804 Ukraine, belonging to the institution)
Edition
Journal of Mathematical Physics, Melville (USA), American Institute of Physics, 2020, 0022-2488
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
United States of America
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
RIV identification code
RIV/47813059:19610/20:A0000080
Organization unit
Mathematical Institute in Opava
UT WoS
000582910500001
Keywords in English
Korteweg-De Vries equation; Classification; Operators; Systems; Fields; Euler
Tags
Tags
International impact, Reviewed
Links
EF16_027/0008521, research and development project.
Změněno: 6/4/2021 13:39, Mgr. Aleš Ryšavý
Abstract
V originále
Using advantages of nonstandard computational techniques based on the light-cone variables, we explicitly find the algebra of generalized symmetries of the (1 + 1)-dimensional Klein-Gordon equation. This allows us to describe this algebra in terms of the universal enveloping algebra of the essential Lie invariance algebra of the Klein-Gordon equation. Then, we single out variational symmetries of the corresponding Lagrangian and compute the space of local conservation laws of this equation, which turns out to be generated, up to the action of generalized symmetries, by a single first-order conservation law. Moreover, for every conservation law, we find a conserved current of minimal order contained in this conservation law.