J 2020

General parametrization of higher-dimensional black holes and its application to Einstein-Lovelock theory

KONOPLYA, Roman, Thomas PAPPAS a Zdeněk STUCHLÍK

Základní údaje

Originální název

General parametrization of higher-dimensional black holes and its application to Einstein-Lovelock theory

Autoři

KONOPLYA, Roman (804 Ukrajina, domácí), Thomas PAPPAS (300 Řecko, domácí) a Zdeněk STUCHLÍK (203 Česká republika, domácí)

Vydání

Physical Review D, COLLEGE PK, AMER PHYSICAL SOC, 2020, 1550-7998

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Kód RIV

RIV/47813059:19630/20:A0000011

Organizační jednotka

Fyzikální ústav v Opavě

UT WoS

000579342400015

Klíčová slova anglicky

NORMAL-MODES; SYMMETRICAL-SOLUTIONS; SPACE; THERMODYNAMICS

Příznaky

Mezinárodní význam, Recenzováno

Návaznosti

GA19-03950S, projekt VaV.
Změněno: 26. 4. 2022 19:12, Mgr. Pavlína Jalůvková

Anotace

V originále

Here we have developed the general parametrization for spherically symmetric and asymptotically flat black-hole spacetimes in an arbitrary metric theory of gravity. The parametrization is similar in spirit to the parametrized post-Newtonian approximation, but valid in the whole space outside the event horizon, including the near horizon region. This generalizes the continued-fraction expansion method in terms of a compact radial coordinate suggested by Rezzolla and Zhidenko [Phys. Rev. D 90, 084009 (2014)] for the four-dimensional case. As the first application of our higher-dimensional parametrization we have approximated black-hole solutions of the Einstein-Lovelock theory in various dimensions. This allows one to write down the black-hole solution which depends on many parameters (coupling constants in front of higher curvature terms) in a very compact analytic form, which depends only upon a few parameters of the parametrization. The approximate metric deviates from the exact (but extremely cumbersome) expressions by fractions of one percent even at the first order of the continued-fraction expansion, which is confirmed here by computation of observable quantities, such as quasinormal modes of the black hole.