2020
General parametrization of higher-dimensional black holes and its application to Einstein-Lovelock theory
KONOPLYA, Roman, Thomas PAPPAS a Zdeněk STUCHLÍKZákladní údaje
Originální název
General parametrization of higher-dimensional black holes and its application to Einstein-Lovelock theory
Autoři
KONOPLYA, Roman (804 Ukrajina, domácí), Thomas PAPPAS (300 Řecko, domácí) a Zdeněk STUCHLÍK (203 Česká republika, domácí)
Vydání
Physical Review D, COLLEGE PK, AMER PHYSICAL SOC, 2020, 1550-7998
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/47813059:19630/20:A0000011
Organizační jednotka
Fyzikální ústav v Opavě
UT WoS
000579342400015
Klíčová slova anglicky
NORMAL-MODES; SYMMETRICAL-SOLUTIONS; SPACE; THERMODYNAMICS
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Návaznosti
GA19-03950S, projekt VaV.
Změněno: 26. 4. 2022 19:12, Mgr. Pavlína Jalůvková
Anotace
V originále
Here we have developed the general parametrization for spherically symmetric and asymptotically flat black-hole spacetimes in an arbitrary metric theory of gravity. The parametrization is similar in spirit to the parametrized post-Newtonian approximation, but valid in the whole space outside the event horizon, including the near horizon region. This generalizes the continued-fraction expansion method in terms of a compact radial coordinate suggested by Rezzolla and Zhidenko [Phys. Rev. D 90, 084009 (2014)] for the four-dimensional case. As the first application of our higher-dimensional parametrization we have approximated black-hole solutions of the Einstein-Lovelock theory in various dimensions. This allows one to write down the black-hole solution which depends on many parameters (coupling constants in front of higher curvature terms) in a very compact analytic form, which depends only upon a few parameters of the parametrization. The approximate metric deviates from the exact (but extremely cumbersome) expressions by fractions of one percent even at the first order of the continued-fraction expansion, which is confirmed here by computation of observable quantities, such as quasinormal modes of the black hole.