J 2020

Simply rotating higher dimensional black holes in Einstein-Gauss-Bonnet theory

KONOPLYA, Roman and Olexandr ZHYDENKO

Basic information

Original name

Simply rotating higher dimensional black holes in Einstein-Gauss-Bonnet theory

Authors

KONOPLYA, Roman (804 Ukraine, belonging to the institution) and Olexandr ZHYDENKO (804 Ukraine, belonging to the institution)

Edition

Physical Review D, US - Spojené státy americké, 2020, 1550-7998

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10308 Astronomy

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

URL

RIV identification code

RIV/47813059:19630/20:A0000012

Organization unit

Institute of physics in Opava

DOI

http://dx.doi.org/10.1103/PhysRevD.102.084030

UT WoS

000577074000001

Keywords in English

ONE-LOOP DIVERGENCES; SYMMETRICAL-SOLUTIONS; SPACE

Tags

, FÚ2020, GA19-03950S, RIV21

Tags

International impact, Reviewed

Links

GA19-03950S, research and development project.
Změněno: 19/4/2021 12:52, Mgr. Pavlína Jalůvková

Abstract

V originále

Using perturbative expansion in terms of powers of the rotation parameter a we construct the axisymmetric and asymptotically flat black-hole metric in the D-dimensional Einstein- Gauss-Bonnet theory. In five-dimensional spacetime we find two solutions to the field equations, describing the asymptotically flat black holes, though only one of them is perturbative in mass, that is, goes over into the Minkowski spacetime when the black-hole mass goes to zero. We obtain the perturbative black-hole solution up to the order O(alpha a(3)) for any D, where alpha is the Gauss-Bonnet coupling, while the D = 5 solution which is nonperturbative in mass is found in analytic form up to the order O(alpha a(7)). In order to check the convergence of the expansion in a we analyze characteristics of photon orbits in this spacetime and compute frequencies of the photon orbits and radius of the photon sphere.
Displayed: 8/1/2025 17:20