2020
Integrability, existence of global solutions, and wave breaking criteria for a generalization of the Camassa-Holm equation
LEAL DA SILVA, Priscila a Igor LEITE FREIREZákladní údaje
Originální název
Integrability, existence of global solutions, and wave breaking criteria for a generalization of the Camassa-Holm equation
Autoři
LEAL DA SILVA, Priscila (76 Brazílie) a Igor LEITE FREIRE (76 Brazílie, garant, domácí)
Vydání
Studies in Applied Mathematics, Hoboken (USA), WILEY, 2020, 0022-2526
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10101 Pure mathematics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Kód RIV
RIV/47813059:19610/20:A0000083
Organizační jednotka
Matematický ústav v Opavě
UT WoS
000550818600001
Klíčová slova anglicky
Camassa-Holm equation; global well-posedness; integrability; wave breaking
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 6. 4. 2021 07:14, Mgr. Aleš Ryšavý
Anotace
V originále
Recent generalizations of the Camassa-Holm equation are studied from the point of view of existence of global solutions, criteria for wave breaking phenomena and integrability. We provide conditions, based on lower bounds for the first spatial derivative of local solutions, for global well-posedness in Sobolev spaces for the family under consideration. Moreover, we prove that wave breaking phenomena occurs under certain mild hypothesis. Based on the machinery developed by Dubrovin [Commun. Math. Phys. 267, 117-139 (2006)] regarding bi-Hamiltonian deformations, we introduce the notion of quasi-integrability and prove that there exists a unique bi-Hamiltonian structure for the equation only when it is reduced to the Dullin-Gotwald-Holm equation. Our results suggest that a recent shallow water model incorporating Coriollis effects is integrable only in specific situations. Finally, to finish the scheme of geometric integrability of the family of equations initiated in a previous work, we prove that the Dullin-Gotwald-Holm equation describes pseudo-spherical surfaces.