J 2020

The Wave-Front Equation of Gravitational Signals in Classical General Relativity

CREMASCHINI, Claudio a Massimo TESSAROTTO

Základní údaje

Originální název

The Wave-Front Equation of Gravitational Signals in Classical General Relativity

Autoři

CREMASCHINI, Claudio (380 Itálie, domácí) a Massimo TESSAROTTO (380 Itálie, domácí)

Vydání

Symmetry, 2020, 2073-8994

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10300 1.3 Physical sciences

Stát vydavatele

Švýcarsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Kód RIV

RIV/47813059:19630/20:A0000087

Organizační jednotka

Fyzikální ústav v Opavě

UT WoS

000521147600031

Klíčová slova anglicky

General Relativity Hamilton equations; General Relativity Hamilton-Jacobi theory; wave-front theory; speed of propagation

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 23. 3. 2021 22:10, Mgr. Pavlína Jalůvková

Anotace

V originále

In this paper the dynamical equation for propagating wave-fronts of gravitational signals in classical general relativity (GR) is determined. The work relies on the manifestly-covariant Hamilton and Hamilton-Jacobi theories underlying the Einstein field equations recently discovered (Cremaschini and Tessarotto, 2015-2019). The Hamilton-Jacobi equation obtained in this way yields a wave-front description of gravitational field dynamics. It is shown that on a suitable subset of configuration space the latter equation reduces to a Klein-Gordon type equation associated with a 4-scalar field which identifies the wave-front surface of a gravitational signal. Its physical role and mathematical interpretation are discussed. Radiation-field wave-front solutions are pointed out, proving that according to this description, gravitational wave-fronts propagate in a given background space-time as waves characterized by the invariant speed-of-light c. The outcome is independent of the actual shape of the same wave-fronts and includes the case of gravitational waves which are characterized by an eikonal representation and propagate in a generic curved space-time along a null geodetics. The same waves are shown: (a) to correspond to the geometric-optics limit of the same curved space-time solutions; (b) to propagate in a flat space-time as plane waves with constant amplitude; (c) to display also the corresponding form of the wave-front in curved space-time. The result is consistent with the theory of the linearized Einstein field equations and the existence of gravitational waves achieved in such an asymptotic regime. Consistency with the non-linear Trautman boundary-value theory is also displayed.