2020
New approaches to the general relativistic poynting-robertson effect
DE FALCO, VittorioZákladní údaje
Originální název
New approaches to the general relativistic poynting-robertson effect
Autoři
DE FALCO, Vittorio (380 Itálie, garant, domácí)
Vydání
Emerging Science Journal, 2020, 2610-9182
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Itálie
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/47813059:19630/20:A0000095
Organizační jednotka
Fyzikální ústav v Opavě
Klíčová slova anglicky
Poynting-Robertson Effect; Radiation Processes in High-energy Astrophysics; Theoretical Physics
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 26. 4. 2022 17:47, Mgr. Pavlína Jalůvková
Anotace
V originále
Objectives: A systematic study on the general relativistic Poynting-Robertson effect has been developed so far by introducing different complementary approaches, which can be mainly divided in two kinds: (1) improving the theoretical assessments and model in its simple aspects, and (2) extracting mathematical and physical information from such system with the aim to extend methods or results to other similar physical systems of analogue structure. Methods/Analysis: We use these theoretical approaches: relativity of observer splitting formalism; Lagrangian formalism and Rayleigh potential with a new integration method; Lyapunov theory os stability. Findings: We determined the three-dimensional formulation of the general relativistic Poynting-Robertson effect model. We determine the analytical form of the Rayleigh potential and discuss its implications. We prove that the critical hypersurfaces (regions where there is a balance between gravitational and radiation forces) are stable configurations. Novelty/Improvement: Our new contributions are: to have introduced the three-dimensional description; to have determined the general relativistic Rayleigh potential for the first time in the General Relativity literature; to have provided an alternative, general and more elegant proof of the stability of the critical hypersurfaces.