J 2021

Dynamical stability of the modified Tolman VII solution

POSADA AGUIRRE, Nelson Camilo, Jan HLADÍK a Zdeněk STUCHLÍK

Základní údaje

Originální název

Dynamical stability of the modified Tolman VII solution

Autoři

POSADA AGUIRRE, Nelson Camilo (170 Kolumbie, garant, domácí), Jan HLADÍK (203 Česká republika, domácí) a Zdeněk STUCHLÍK (203 Česká republika, domácí)

Vydání

Physical Review D, 2021, 2470-0010

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Kód RIV

RIV/47813059:19630/21:A0000126

Organizační jednotka

Fyzikální ústav v Opavě

UT WoS

000655909400019

Klíčová slova anglicky

modified Tolman VII solution; stability; radial oscilations

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 18. 6. 2021 12:59, RNDr. Jan Hladík, Ph.D.

Anotace

V originále

Studies of neutron stars are at their peak after the multimessenger observation of the binary merger event GW170817, which strongly constrains the stellar parameters like tidal deformability, masses, and radii. Although current and future observations will provide stronger limits on the neutron stars parameters, knowledge of explicit interior solutions to Einstein's equations, which connect observed parameters with the internal structure, are crucial to have a satisfactory description of the interior of these compact objects. A well-known exact solution, which has shown a relatively good approximation to a neutron star, is the Tolman VII solution. In order to provide a better fitting for the energy density profile, with the realistic equations of state for neutron stars, recently, Jiang and Yagi proposed a modified version of this model, which introduces an additional parameter a, reflecting the interplay of the quadratic and the newly added quartic term in the energy density profile. Here we study the dynamical stability of this modified Tolman VII solution using the theory of infinitesimal and adiabatic radial oscillations developed by Chandrasekhar. For this purpose, we determine values of the critical adiabatic index, for the onset of instability, considering configurations with varying compactness and a. We found that the new models are stable against radial oscillations for a considerable range of values of compactness and the new parameter a, thus supporting their applicability as a physically plausible approximation of realistic neutron stars.