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A universal theorem of the alternative 

David Bartl1 

Abstract.  We present a particular theorem of the alternative for finite systems 
of linear inequalities.  The theorem is universal in the sense that other classical 
theorems of the alternative (Motzkin’s Theorem and Tucker’s Theorem) are 
implicit in it; the theorem itself is an extension of Farkas’ Lemma.  The pre-
sented result also generalizes and unifies both Dax’s new theorem the alterna-
tive [Dax, A. (1993). Annals of Operations Research, 46, 11–60] and Rohn’s 
residual existence theorem for linear equations [Rohn, J. (2010). Optimization 

Letters, 4, 287–292].  The universal theorem of the alternative is established 
by using Farkas’ Lemma in the setting of a vector space over a linearly ordered 
(commutative or skew) field. 
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1 Introduction 

In this note, we present a universal theorem of the alternative which unifies both Dax’s new 
theorem of the alternative (Dax, 1993) and Rohn’s residual existence theorem for linear equa-
tions (Rohn, 2010).  Moreover, the universal theorem contains Motzkin’s Theorem of the alter-
native (Motzkin, 1934) and Tucker’s Theorem of the alternative (Tucker, 1956) implicitly in it.  
The theorem is established by using Farkas’ Lemma (Farkas, 1902), which has proved to be a 
result of importance in optimization and also in economics (Vohra, 2006).  Short proofs of 
Farkas’ Lemma include those given by Dax (1997), Broyden (1998; Roos and Terlaky, 1999), 
Komornik (1998), Scowcroft (2006, pp. 3535–3536, in the Introduction) and Bartl (2012a).  See 
Fujimoto et al. (2018) for another proof; see also the references therein for further discussion 
of earlier proofs.  Considering natural numbers �, �, � ∈ ℕ, recall the original results in the 
setting of the finite-dimensional vector space ℝ�, where 	 ∈ ℕ is a natural number. 

Farkas’ Lemma (Farkas, 1902).  Let 
 ∈ ℝ�×� be a matrix and let � ∈ ℝ�×� be a row vector.  It holds ∀� ∈ ℝ�:  
� ≤ � ⟹ �� ≤ 0 
if and only if ∃�� ∈ ℝ�×�,  �� ≥ ��: � = ��
 . 
Dax’s new theorem of the alternative (Dax, 1993, Sections 5.1 and 5.4).  Let � ∈ ℝ�×� be a row vector, let ��, … , � ∈ ℝ�×� be one-row matrices, and let !�, … , ! ∈ ℝ be positive weights.  It holds ∀� ∈ ℝ�: �� ≤ !�|���| + ⋯ + ! |� �| 
if and only if ∃%� ∈ ℝ, −!� ≤ %� ≤ !�,  … ,  ∃% ∈ ℝ, −! ≤ % ≤ ! : � = %��� + ⋯ + % �  . 
Rohn’s residual existence theorem for linear equations (Rohn, 2010, Theorem 2).  Let � ∈ ℝ�×� be a row 

vector, let ' ∈ ℝ(×� be a matrix, and let )*��, … , *+�, ⊆ ℝ�×( be any collection of row vectors.  It holds ∀� ∈ ℝ�: �� ≤ max)*��'�, … , *+�'�, 

if and only if ∃%�, … , %+ ∈ ℝ, %�, … , %+ ≥ 0, %� + ⋯ + %+ = 1: � = 2%�*�� + ⋯ + %+*+�3' . 
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Motzkin’s Theorem (Motzkin, 1934; Motzkin, 1952, Theorem D6, p. 60).  Let 
 ∈ ℝ�×� and � ∈ ℝ+×� be 

matrices.  It holds ∄� ∈ ℝ�:  
� ≤ �  ∧  �� < � 
if and only if ∃7� ∈ ℝ�×�,  7� ≥ ��,  ∃8� ∈ ℝ�×+,  8� ≥ ��,  9� + ⋯ + 9+ = 1: 7�
 + 8�� = :� , 
where :� ∈ ℝ�×� is the row vector consisting of 	 zeros and 9�, … , 9+ ∈ ℝ are the components of 8�. 

Tucker’s Theorem (Tucker, 1956, Corollary 2A part (i)).  Let 
 ∈ ℝ�×� and � ∈ ℝ ×� be matrices, where the 

matrix � consists of the rows *�, … , * ∈ ℝ�×�.  It holds ∄� ∈ ℝ�:  
� ≤ �  ∧  �� ≤ �  ∧   *�� + ⋯ + * � = −1 

if and only if ∃7� ∈ ℝ�×�,  7� ≥ ��,  ∃8� ∈ ℝ�× ,  8� > ��: 7�
 + 8�� = :� , 
where :� ∈ ℝ�×� is the row vector consisting of 	 zeros. 

2 Notation and Farkas’ Lemma 

Let < be a linearly ordered (commutative or skew) field.  Additionally, let = be a linearly or-
dered vector space over the linearly ordered field <.  The relation of the linear ordering of the 
field < and vector space = will be denoted by the symbol ≤ and ≼, respectively.  Recall that an 
element ? ∈ < is positive and non-negative if and only if ? > 0 and ? ≥ 0, respectively.  These 
two concepts are analogously defined for the elements of the vector space =.  Finally, let @ be 
a vector space over the field <. 

For non-negative natural numbers � and �, and for positive natural numbers ��, … , � , let A�, … , A�: @ → < and CD�, … , CD+E: @ → < be linear forms, which make up the linear map-

pings F: @ → <� and GD: @ → <+E, respectively, for H = 1, … , �.  (The mappings F: @ → <� 

and GD: @ → <+E generalize the concept of the matrices 
 ∈ ℝ�×� and �D ∈ ℝ+E×�, which we 

could see in the Introduction.  Additionally, the linear forms A�, … , A�: @ → < and CD�, … , CD+E: @ → < correspond to the rows J�, … , J� and *D�, … , *D+E of the matrix 
 and �D, respec-

tively, for H = 1, … , �.) 

For any elements ?, 9 ∈ < and for any vector K ∈ =, we put L?9 = 9? and LK? = ?K.  In 
other words, the symbol ‘L’ (Greek letter iota) means that the next two entities are to be trans-
posed and multiplied in the new order. 

Now, let � and � be a non-negative and positive, respectively, natural number.  As above, 
consider the linear mappings F: @ → <� and G: @ → <+.  For any � ∈ =� and M ∈ =+, we 
stipulate that they consist of the components K�, … , K� and %�, … , %+, respectively.  Moreover, 

we define the linear mappings L��F: @ → = and LM�G: @ → = by L��FN = ∑ 2APN3KP�PQ�  and LM�GN = ∑ 2CRN3%R+RQ� , respectively, for every N ∈ @.  The symbol 0 denotes the column  

vector consisting of � zeros of the field <.  Additionally, the symbol �� denotes the row con-

sisting of � or � zeros of the vector space =.  The inequalities FN ≤ � and �� ≽ �� as well as M� ≽ �� are understood componentwise, that is APN ≤ 0 and KP ≽ 0 for every T = 1, … , � and 
also %R ≽ 0 for every U = 1, … , �, respectively.  The symbol V denotes the column vector con-

sisting of � ones of the field <.  We then have LM�V = L%�1 + ⋯ + L%+1 = %� + ⋯ + %+.  The 

symbol W denotes the zero linear mapping W: @ → =.  If � = 0, then L��F = W and the ine-

qualities FN ≤ � and also �� ≽ �� are logically true by convention. 
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Finally, let X: @ → = be any linear mapping.  (The mapping X: @ → = generalizes the  

concept of the row vector � ∈ ℝ�×�, which we could see in the Introduction.) 

Considering a non-negative natural number �, we now recall the following generalization 
of Farkas’ Lemma formulated in the setting of a (possibly infinite-dimensional) vector space @ over a (commutative or skew) linearly ordered field <, see Bartl (2007, Lemma 4.1). 

Lemma 1 (Farkas’ Lemma).  Let < be a linearly ordered (commutative or skew) field, let @ be a vector space 

over the field <, and let = be a linearly ordered vector space over the linearly ordered field <.  Let F: @ → <� 

and X: @ → = be linear mappings.  It then holds ∀N ∈ @:  FN ≤ �  ⟹  XN ≼ 0 

if and only if ∃� ∈ =�,  �� ≽ ��:  X = L��F . 
See Bartl (2012a) for a very short proof.  The original version of Farkas’ Lemma presented 

in the Introduction is obtained by considering the field < ≔ ℝ of the real numbers, the finite-
dimensional vector space @ ≔ ℝ�, and the one-dimensional real line = ≔ ℝ�. 

3 A universal theorem of the alternative 

Considering non-negative natural numbers � and � and also positive natural numbers ��, … , � , 
we present a new universal theorem of the alternative. 

Theorem 2 (universal theorem of the alternative).  Let < be a linearly ordered (commutative or skew) field, let  @ be a vector space over the field <, and let = be a linearly ordered vector space over the linearly ordered  

field <.  Let F: @ → <� be a linear mapping, let G�: @ → <+Z , …, G : @ → <+[  be linear mappings consisting 

of the linear forms C��, … , C�+Z: @ → <, …, C �, … , C +[ : @ → <, respectively, let !�, … , ! ∈ = be non-negative 

weights, and let X: @ → = be a linear mapping.  It then holds ∀N ∈ @:  FN ≤ �  ⟹  XN ≼ L!� max]C��N, … , C�+ZN^ + ⋯ + L! max]C �N, … , C +[N^ 

if and only if ∃� ∈ =�,  �� ≽ ��, ∃M� ∈ =+Z ,  M�� ≽ ��,  LM��V = !�, … , ∃M ∈ =+[ ,  M � ≽ ��,  LM �V = ! :  X = L��F + LM��G� + ⋯ + LM �G  . 
Proof.  The implication FN ≤ �  ⟹  XN ≼ L!� max]C��N, … , C�+ZN^ + ⋯ + L! max]C �N, … , C +[N^ 

holds for every N ∈ @ if and only if the implication FN ≤ �   ∧    G�N ≤ V_�   ∧   ⋯ ∧   G N ≤ V_   ⟹  XN ≼ L!�_� + ⋯ + L! _  

holds for every N ∈ @ and for every _�, … , _ ∈ <, which equivalently means that 

∀ ` N_�⋮_ 
b ∈ @ ×c < : d    FN   ≤ 0G�N   +   V_�   ≤ 0⋮ ⋱ ⋮   G N +   V_   ≤ 0g   ⟹  XN + L!�_� + ⋯ + L! _ ≼ 0 . 

By Farkas’ Lemma 1, with the vector space @ replaced by @ ×c < , it equivalently holds that 

∃ ` �M�⋮M 
b ∈ =� ×c =+Z ×c ⋯ ×c =+[ ,   ` �M�⋮M 

b
�

≽    `��⋮�b
�

:    L ` �M�⋮M 
b

�
` FG� VL⋮   ⋱  G VL   b = 

                               = 2X   L!� … L! 3 . 
It is thus equivalent to say that there exist a non-negative � ∈ =� and a non-negative M� ∈ =+Z , …, a non-negative M ∈ =+[ such that LM��VL = L!�, …, LM �VL = L! , which equivalently means that LM��V = !�, …, LM �V = ! , and 
also X = L��F + LM��G� + ⋯ + LM �G , which concludes the proof. ∎ 
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4 Special cases of the universal theorem of the alternative 

We discuss some special cases of the universal theorem of the alternative (Theorem 2) in this 
section. 

4.1 Farkas’ Lemma 

In the previous section, we used Farkas’ Lemma 1 to prove Theorem 2.  At the same time, 
Farkas’ Lemma 1 is also a special case of Theorem 2 when � = 0.  In particular, if � = 0, then 

the empty sum L!� max]C��N, … , C�+ZN^ + ⋯ + L! max]C �N, … , C +[N^ = 0, the zero of the 

vector space =, by convention.  The remaining terms ‘∃MD ∈ =+E, MD� ≽ ��, LMD�V = !D’ and 

‘LMD�GD’ vanish in Theorem 2 if � = 0, whence the conclusion is easy to see. 

4.2 Dax’s new theorem of the alternative 

The version of Dax’s new theorem of the alternative which was given in the Introduction can 
be found in Dax (1993, Sections 5.1 and 5.4).  A generalized version can be found in Dax 
(1990).  Here, we obtain the following generalization of Dax’s new theorem of the alternative, 
where � and � are non-negative natural numbers, as a special case of Theorem 2. 

Theorem 3 (Dax’s new theorem of the alternative).  Let < be a linearly ordered (commutative or skew) field, let  @ be a vector space over the field <, and let = be a linearly ordered vector space over the linearly ordered  

field <.  Let F: @ → <� be a linear mapping, let G�: @ → <, …, G : @ → < be linear forms, let !�, … , ! ∈ = 

be non-negative weights, and let X: @ → = be a linear mapping.  It then holds ∀N ∈ @:  FN ≤ �  ⟹  XN ≼ L!�|G�N| + ⋯ + L! |G N| 
if and only if ∃� ∈ =�,  �� ≽ ��, ∃%� ∈ =, −!� ≼ %� ≼ !�, … , ∃% ∈ =, −! ≼ % ≼ ! :  X = L��F + L%�G� + ⋯ + L% G  . 
Proof.  In Theorem 2, consider �� = ⋯ = � = 2 with C�� = G�, C�j = −G�, …, C � = G , C j = −G .  Observe 
that the absolute value kGDNk = max]GDN, −GDN^ = max]CD�N, CDjN^ for every N ∈ @ for H = 1, … , �.  Moreover, 
we have for any %D ∈ = that −!D ≼ %D ≼ !D if and only if %D = %D� − %Dj for some non-negative %D�, %Dj ∈ = such 

that %D� + %Dj = !D for H = 1, … , �.  Finally, notice that L%DGD = Ll%D� − %DjmGD = L%D�CD� + L%DjCDj for H = 1, … , �.  
The equivalence is easy to see now. ∎ 

The original version due to Dax (1993, Sections 5.1 and 5.4), presented in the Introduction, 
is obtained by considering the field < ≔ ℝ of the real numbers, the finite-dimensional vector 
space @ ≔ ℝ�, the one-dimensional real line = ≔ ℝ�, and by letting � ≔ 0. 

4.3 Rohn’s residual existence theorem for linear equations 

Rohn’s residual existence theorem for linear equations (Rohn, 2010, Theorem 2), which was 

presented in the Introduction, says in words that the system of linear equations � = n�' has a 

solution n� ∈ ℝ�×( in the convex hull of the set )*��, … , *+�, if and only if �� ≤ max)*��'�, … , *+�'�, for every � ∈ ℝ�.  We obtain the following generalization of Rohn’s residual existence 
theorem for linear equations, where � and � is a non-negative and positive, respectively, natural 
number, as a special case of Theorem 2. 

Theorem 4 (Rohn’s residual existence theorem for linear equations).  Let < be a linearly ordered (commutative 

or skew) field, let @ be a vector space over the field <, and let = be a linearly ordered vector space over the 

linearly ordered field <.  Let F: @ → <� be a linear mapping, let C�, … , C+: @ → < be linear forms, let ! ∈ = be 

a non-negative weight, and let X: @ → = be a linear mapping.  It then holds 
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∀N ∈ @:  FN ≤ �  ⟹  XN ≼ L! max)C�N, … , C+N, 

if and only if ∃� ∈ =�,  �� ≽ ��,  ∃%�, … , %+ ∈ =, %�, … , %+ ≽ 0, %� + ⋯ + %+ = !:  X = L��F + L%�C� + ⋯ + L% C  . 
Proof.  Consider Theorem 2 with � = 1. ∎ 

The original version of Rohn’s residual existence theorem for linear equations (Rohn, 2010, 
Theorem 2), presented in the Introduction, is obtained by considering the field < ≔ ℝ of the 
real numbers, the finite-dimensional vector space @ ≔ ℝ�, the one-dimensional real line  = ≔ ℝ�, by letting � ≔ 0 and � ≔ 1, and by taking the weight ! ≔ 1.  Then, given the row 

vector � ∈ ℝ�×�, the matrix ' ∈ ℝ(×�, and the row vectors *��, … , *+� ∈ ℝ�×(, consider the 

mapping X: ℝ� → ℝ� and the linear forms C�, … , C+: ℝ� → ℝ defined by X: � ↦ �� and CR: � ↦ *R�'� for U = 1, … , �, respectively, for every � ∈ ℝ�. 

More generally, given the row vector � ∈ ℝ�×�, the matrix ' ∈ ℝ(×�, and the set )*��, … , *+�, ⊆ ℝ�×(, consider yet a set )J��, … , J�� , ⊆ ℝ�×(.  Then, by Theorem 4, the system 

of linear equations � = n�' has a solution n� ∈ ℝ�×( of the form n� = K�J�� + ⋯ + K�J�� + +  %�*�� + ⋯ + %+*+� for some K�, … , K� ≥ 0 and for some %�, … , %+ ≥ 0 such that %� + ⋯ + +  %+ = 1, that is in the Minkowski sum (the convex hull of )*��, … , *+�, plus the convex conical 

hull of )J��, … , J�� ,) if and only if J��'�, … , J�� '� ≤ 0 implies �� ≤ max)*��'�, … , *+�'�, 
for every � ∈ ℝ�.  See Bartl (2012b, Theorem 5) for further generalization in this direction. 

4.4 Motzkin’s Theorem of the alternative 

Motzkin’s Theorem of the alternative (Motzkin, 1934; Motzkin, 1952, Theorem D6 [in  
Chap. III, § 13, par. 73], p. 60; cf. Tucker, 1956, Corollary 2A part (i)) is used to establish 
optimality conditions in non-linear optimization, see, e.g., Mangasarian (1994), Birbil et al. 
(2007).  Notice that, depending upon the approach, Farkas’ Lemma can be used to establish 
optimality conditions in non-linear optimization directly, see, e.g., Franklin (2002).  Below, we 
obtain the following generalization of Motzkin’s Theorem of the alternative, where � and � is 
a non-negative and positive, respectively, natural number and 0 denotes the zero vector of the 
space =, as a special case of Theorem 2; it is a special case of Theorem 4 actually. 

Theorem 5 (Motzkin’s Theorem of the alternative).  Let < be a linearly ordered (commutative or skew) field,  

let @ be a vector space over the field <, and let = be a linearly ordered vector space over the linearly ordered  

field <.  Let F: @ → <� be a linear mapping, let C�, … , C+: @ → < be linear forms, and let ! ∈ = be a non-

negative weight.  It then holds ∄N ∈ @:  FN ≤ �  ∧  L! max)C�N, … , C+N, ≺ 0 
if and only if ∃� ∈ =�,  �� ≽ ��,  ∃%�, … , %+ ∈ =, %�, … , %+ ≽ 0, %� + ⋯ + %+ = !:  L��F + L%�C� + ⋯ + L% C = W . 
Proof.  There is no N ∈ @ such that FN ≤ 0 and L! max)C�N, … , C+N, ≺ 0 if and only if FN ≤ 0 implies  0 ≼ L! max)C�N, … , C+N, for every N ∈ @.  Now, conclude the proof by considering Theorem 4 with X = W, the 
zero linear mapping W: @ → =. ∎ 

Remark 1.  It holds max)C�N, … , C+N, < 0 if and only if GN < �, cf. Motzkin’s Theorem in the Introduction. 

By identifying the vector space = with the one-dimensional line <�, i.e. by taking = ≔ <�, 
and by considering the weight ! ≔ 1 and also Remark 1, we obtain the generalization of 
Motzkin’s Theorem due to Bartl (2007, Theorem 5.1). 
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To obtain the original formulation of Motzkin’s Theorem (Motzkin, 1934; Motzkin, 1952, 
Theorem D6, p. 60; see Birbil et al., 2007, Lemma 2.2, for another equivalent formulation), 
presented in the Introduction, consider the field < ≔ ℝ of the real numbers, the finite-dimen-
sional vector space @ ≔ ℝ�, the one-dimensional real line = ≔ ℝ�, the weight ! ≔ 1, and 
Remark 1. 

4.5 Tucker’s Theorem of the alternative 

Tucker’s Theorem of the alternative (Tucker, 1956, Corollary 2A part (ii)) is dual to Motzkin’s 
Theorem of the alternative; compare both theorems in the Introduction to see this.  The follow-
ing generalization of Tucker’s Theorem of the alternative, where � and � are non-negative 
natural numbers and 0 denotes the zero vector of the space =, is a special case of Theorem 2. 

Theorem 6 (Tucker’s Theorem of the alternative).  Let < be a linearly ordered (commutative or skew) field, let  @ be a vector space over the field <, and let = be a linearly ordered vector space over the linearly ordered  

field <.  Let F: @ → <� be a linear mapping, let G: @ → <  be a linear mapping consisting of the linear forms C�, … , C : @ → <, and let q ∈ =  be a column vector of non-negative weights !�, … , ! ∈ =.  It then holds ∄N ∈ @:  FN ≤ �  ∧  GN ≤ �  ∧  L!�C�N + ⋯ + L! C N ≺ 0 

if and only if ∃� ∈ =�,  �� ≽ ��,  ∃M ∈ = ,  M� ≽ q�:  L��F + LM�G = W . 
Proof.  There is no N ∈ @ such that FN ≤ � and GN ≤ � and also L!�C�N + ⋯ + L! C N ≺ 0 if and only if 

∀N ∈ @: rFGs N ≤ r��s   ⟹  0 ≼ L!�C�N + ⋯ + L! C N . 
By Theorem 2, with �� = ⋯ = � = 1 and X = W, the zero linear mapping W: @ → =, and also with the linear 

mapping F: @ → <� replaced with the linear mapping rFGs : @ → <� ×c < , it equivalently holds that 

∃� ∈ =�,  �� ≽ ��,  ∃Mt ∈ = ,  Mt� ≽ ��:  L��F + LMt�G + L!�C� + ⋯ + L! C = W . 
We have LMt�G + L!�C� + ⋯ + L! C = LMt�G + Lq�G = L2Mt + q3�G.  By considering M = Mt + q, it is equiva-
lent to say that L��F + LM�G = W for some non-negative � ∈ =� and for some M ∈ =  such that M� ≽ q�, which 
means we are done. ∎ 

Remark 2.  If the weights q ∈ =  are positive, then M� ≽ q� ≻ ��, cf. Tucker’s Theorem in the Introduction. 

By identifying the vector space = with the one-dimensional line <�, i.e. by taking = ≔ <�, 
and by considering the weights !� ≔ ⋯ ≔ ! ≔ 1, we obtain the generalization of Tucker’s 
Theorem due to Bartl (2007, Theorem 5.2). 

To obtain the original formulation of Tucker’s Theorem (Tucker, 1956, Corollary 2A  
part (ii)), presented in the Introduction, consider the field < ≔ ℝ of the real numbers, the finite-
dimensional vector space @ ≔ ℝ�, the one-dimensional real line = ≔ ℝ�, and the weights !� ≔ ⋯ ≔ ! ≔ 1. 

5 Concluding remarks 

We presented a new universal theorem of the alternative (Theorem 2).  We proved this result 
by using Farkas’ Lemma 1.  We then showed that many other theorems of the alternative  
(Farkas’ Lemma itself, Dax’s new theorem of the alternative, Rohn’s residual existence theo-
rem for linear equations, Motzkin’s Theorem of the alternative and Tucker’s Theorem of the 
alternative) are special cases of the universal theorem of the alternative (Theorem 2). 
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Fan (1956) and Chernikov (1968) also considered (finite) systems of linear inequalities and 
theorems of the alternative from the algebraic point of view, i.e. in a vector space of arbitrary 
dimension.  Fan (1956) studies linear inequalities in a vector space over the field of real num-
bers ℝ and also over the field of the complex numbers ℂ.  Chernikov (1968) presents a theory 
of linear inequalities in a vector space over a linearly ordered commutative field <.  In this 
paper, we consider any linearly ordered (commutative or skew) field <, a vector space @ over 
the field <, and a linearly ordered vector space = over the linearly ordered field <. 

Let the linear mappings G�: @ → <+Z, …, G : @ → <+[ and the non-negative weights !�, … , ! ∈ = be as in Theorem 2.  Notice that the mapping w: @ → = defined by w: N ⟼ L!� max]C��N, … , C�+ZN^ + ⋯ + L! max]C �N, … , C +[N^ 

is sublinear, that is w2?N3 = ?w2N3 for all positive ? ∈ < and for all N ∈ @ and also w2N + _3 ≼ ≼ w2N3 + w2_3 for all N, _ ∈ @.  It seems that Theorem 2 can be used to obtain optimality 
conditions for some optimization problems with a non-smooth objective function of a special 
form. 

By using a discrete variant of Farkas’ Lemma (Bartl, 2020), we could achieve analogous 
results in the discrete setting of a module over a non-trivial linearly ordered commutative ring. 

Finally, by using an extended variant of Farkas’ Lemma, which allows the system ‘FN ≤ �’ 
to be infinite, we could generalize the results even further. 
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