Detailed Information on Publication Record
2021
Deforming lie algebras to frobenius integrable nonautonomous hamiltonian systems
SERGYEYEV, Artur, Maciej BŁASZAK and Krzysztof MARCINIAKBasic information
Original name
Deforming lie algebras to frobenius integrable nonautonomous hamiltonian systems
Authors
SERGYEYEV, Artur (804 Ukraine, belonging to the institution), Maciej BŁASZAK (616 Poland, guarantor) and Krzysztof MARCINIAK (616 Poland)
Edition
Reports on Mathematical Physics, Oxford (GB), Elsevier Ltd. 2021, 0034-4877
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
United Kingdom of Great Britain and Northern Ireland
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
RIV identification code
RIV/47813059:19610/21:A0000089
Organization unit
Mathematical Institute in Opava
UT WoS
000652736500006
Keywords in English
Frobenius integrability; Lie algebras; Liouville integrability; quasi-Stäckel systems; separable systems
Tags
Tags
International impact, Reviewed
Links
GBP201/12/G028, research and development project.
Změněno: 29/3/2022 09:38, Mgr. Aleš Ryšavý
Abstract
V originále
Motivated by the theory of Painlevé equations and associated hierarchies, we study nonautonomous Hamiltonian systems that are Frobenius integrable. We establish sufficient conditions under which a given finite-dimensional Lie algebra of Hamiltonian vector fields can be deformed into a time-dependent Lie algebra of Frobenius integrable vector fields spanning the same distribution as the original algebra. The results are applied to quasi-Stäckel systems from [14].