J 2021

Deforming lie algebras to frobenius integrable nonautonomous hamiltonian systems

SERGYEYEV, Artur, Maciej BŁASZAK and Krzysztof MARCINIAK

Basic information

Original name

Deforming lie algebras to frobenius integrable nonautonomous hamiltonian systems

Authors

SERGYEYEV, Artur (804 Ukraine, belonging to the institution), Maciej BŁASZAK (616 Poland, guarantor) and Krzysztof MARCINIAK (616 Poland)

Edition

Reports on Mathematical Physics, Oxford (GB), Elsevier Ltd. 2021, 0034-4877

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

United Kingdom of Great Britain and Northern Ireland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Reports on Mathematical Physics

RIV identification code

RIV/47813059:19610/21:A0000089

Organization unit

Mathematical Institute in Opava

DOI

http://dx.doi.org/10.1016/S0034-4877(21)00028-8

UT WoS

000652736500006

Keywords in English

Frobenius integrability; Lie algebras; Liouville integrability; quasi-Stäckel systems; separable systems

Tags

Tags

International impact, Reviewed

Links

GBP201/12/G028, research and development project.
Změněno: 29/3/2022 09:38, Mgr. Aleš Ryšavý

Abstract

V originále

Motivated by the theory of Painlevé equations and associated hierarchies, we study nonautonomous Hamiltonian systems that are Frobenius integrable. We establish sufficient conditions under which a given finite-dimensional Lie algebra of Hamiltonian vector fields can be deformed into a time-dependent Lie algebra of Frobenius integrable vector fields spanning the same distribution as the original algebra. The results are applied to quasi-Stäckel systems from [14].
Displayed: 26/12/2024 11:57