J 2021

On the algebra of nonlocal symmetries for the 4D Martínez Alonso-Shabat equation

KRASILSHCHIK, Iosif Semjonovich and Petr VOJČÁK

Basic information

Original name

On the algebra of nonlocal symmetries for the 4D Martínez Alonso-Shabat equation

Authors

KRASILSHCHIK, Iosif Semjonovich (643 Russian Federation, guarantor) and Petr VOJČÁK (203 Czech Republic, belonging to the institution)

Edition

Journal of Geometry and Physics, Amsterdam, Elsevier B.V. 2021, 0393-0440

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Netherlands

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Journal of Geometry and Physics

RIV identification code

RIV/47813059:19610/21:A0000098

Organization unit

Mathematical Institute in Opava

DOI

http://dx.doi.org/10.1016/j.geomphys.2021.104122

UT WoS

000636084800017

Keywords in English

4D Martinez Alonso-Shabat equation; Universal hierarchy equation; Lax pairs; Differential coverings; Nonlocal symmetries

Tags

Tags

International impact, Reviewed
Změněno: 29/3/2022 12:39, Mgr. Aleš Ryšavý

Abstract

V originále

We consider the 4D Martinez Alonso-Shabat equation epsilon u(ty) = u(z)u(xy) - u(y)u(xz) (also referred to as the universal hierarchy equation) and using its known Lax pair construct two infinite-dimensional differential coverings over epsilon. In these coverings, we give a complete description of the Lie algebras of nonlocal symmetries. In particular, our results generalize the ones obtained in Morozov and Sergyeyev (2014) and contain the constructed there infinite hierarchy of commuting symmetries as a subalgebra in a much bigger Lie algebra.
Displayed: 26/12/2024 12:45