J 2021

Fair measures for countable-to-one maps

RODRIGUES, Ana, Samuel Joshua ROTH and Zuzana ROTH

Basic information

Original name

Fair measures for countable-to-one maps

Authors

RODRIGUES, Ana (620 Portugal, guarantor), Samuel Joshua ROTH (840 United States of America, belonging to the institution) and Zuzana ROTH (703 Slovakia, belonging to the institution)

Edition

Stochastics and Dynamics, Singapore, World Scientific Publishing Co. Pte Ltd, 2021, 0219-4937

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Singapore

Confidentiality degree

není předmětem státního či obchodního tajemství

RIV identification code

RIV/47813059:19610/21:A0000100

Organization unit

Mathematical Institute in Opava

UT WoS

000603584500003

Keywords in English

Entropy; Markov shift; interval map; fair measure; tame graph

Tags

International impact, Reviewed
Změněno: 28/3/2022 13:23, Mgr. Aleš Ryšavý

Abstract

V originále

In this paper, we generalize the recently introduced concept of fair measure [M. Misiurewicz and A. Rodrigues, Counting preimages, Ergod. Theor. Dyn. Syst. 38 (2018) 1837-1856]. We study fair measures for Markov and mixing interval maps with countably many branches. We investigate them in terms of the recurrence properties of some underlying countable Markov shifts, both from the stochastic viewpoint and from the viewpoint of thermodynamical formalism. Finally, we move beyond the interval and look for fair measures for graph maps.