D 2021

Covid 19 as a factor damping globalization trends - structural analysis of local extrema at the level of EU countries

BOTLÍK, Josef

Základní údaje

Originální název

Covid 19 as a factor damping globalization trends - structural analysis of local extrema at the level of EU countries

Autoři

BOTLÍK, Josef (203 Česká republika, garant, domácí)

Vydání

21st. Žilina, International Scientific Conference Globalization and its Socio-Economic Consequences 2021, od s. 1 - 10, 10 s. 2021

Nakladatel

Žilinská univerzita v Žilině

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

10102 Applied mathematics

Stát vydavatele

Slovensko

Utajení

není předmětem státního či obchodního tajemství

Forma vydání

elektronická verze "online"

Odkazy

Kód RIV

RIV/47813059:19520/21:A0000237

Organizační jednotka

Obchodně podnikatelská fakulta v Karviné

ISSN

Klíčová slova česky

globalizace; covid19; model; Evropa; precedence

Klíčová slova anglicky

globalization;covid19; model; Europe; precedent

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 11. 4. 2022 14:03, Miroslava Snopková

Anotace

V originále

Research background: The authors participate in the creation of a model for monitoring and predicting the behavior of autonomous systems on a selected infrastructure for the analysis of current phenomena. Covid 19 dampens globalization trends and processes, especially free movement. The primary research aim was to identify changes in Covid19 indicators in area. The secondary aim was to find agreement in the behavior of selected globalization factors. Purpose of the article: For the presented analysis, a research question was expressed how the EU states reacted to the change of local extremes of the pandemic. The paper presents spatial changes in the number of infected and dead in EU countries over time and compares these changes with selected changes in population movements and changes selected economic indicators. Methods: Notably daily, monthly and quarterly data from Eurostat, OECD, ECDC and WHO at the level of EU countries were used for the analysis. Local extremes were identified by comparison, precedence analysis, structural analysis and simulation. Findings & Value added: The added value of the paper lies in the chosen method, which identifies local extremes using structural analysis in a geospatial context. In most cases, global analyzes fail to take into account the links between the analyzed factors and the geopolitical location of the region. The work presents the possibilities of analysis using precedent modeling, through which analyzes can be performed with respect to geographical links. The output is the identification of EU countries according to responses to changes in pandemic factors.